Astron. Astrophys. Suppl. Ser. 143, 541 (2000)

Errata

Atomic Data from the IRON Project

XXXVI. Electron excitation of Be-like Fe XXIII between $1s^2 2l_1 2l_2 SLJ$ and $1s^2 2l_3 2l_4 S'L'J'$

M.C. Chidichimo¹, V. Zeman², J.A. Tully³, and K.A. Berrington⁴

Astron. Astrophys. Suppl. Ser. 137 (1999) 175-184

Table 3. Levels 31 and 55 were incorrectly identified and should be labelled as follows: $31 = 2p3p^3D_3$ and $55 = 2s4d^3D_3$.

Table 4. In order to be consistent with Table 3 the indexes need to be changed as follows: $40 \rightarrow 33$, $42 \rightarrow 39$, $72 \rightarrow 73$, $90 \rightarrow 91$, $89 \rightarrow 76$, $95 \rightarrow 93$, $77 \rightarrow 68$, $83 \rightarrow 86$.

Table 4. The third mixing coefficient in the third line was miscopied from the CIV3 output and 0.753 should be replaced by 0.715.

Tables 5, 6. We give corrected versions consistent with Table 9.

Table 5. Showing the effect on $\Upsilon(1-2)$ of chopping off the IRON Project resonances: (a), IRON; (b) IRON (chopped); (c) Bhatia & Mason (1986). $(2.42^{-3} \equiv 2.42 \ 10^{-3})$

$\log T$	(a)	(b)	(c)
6.3 6.5 6.7 6.9 7.1 7.3	2.42 ⁻³ 2.46 ⁻³ 2.37 ⁻³ 2.12 ⁻³ 1.78 ⁻³ 1.41 ⁻³ 1.06 ⁻³	1.22^{-3} 1.18^{-3} 1.12^{-3} 1.02^{-3} 0.90^{-3} 0.75^{-3} 0.61^{-3}	1.34^{-3} 1.27^{-3} 1.17^{-3} 1.04^{-3} 0.89^{-3} 0.74^{-3} 0.60^{-3}
7.5 7.7 7.9 8.1	0.78^{-3} 0.56^{-3} 0.39^{-3}	0.01 0.47^{-3} 0.36^{-3} 0.26^{-3}	0.46^{-3} 0.34^{-3} 0.24^{-3}

Table 6. Showing how the high energy contribution to Υ increases with temperature for three types of transition. Intersytem (non electric dipole) transition: (a) $\Upsilon(1-2)$ with $E_{\rm max}=346.8\,{\rm Ry}$; (b) $\Upsilon(1-2)$ with $E_{\rm max}=10^5\,{\rm Ry}$. Intersystem (electric dipole) transition: (c) $\Upsilon(1-3)$ with $E_{\rm max}=346.6\,{\rm Ry}$; (d) $\Upsilon(1-3)$ with $E_{\rm max}=10^5\,{\rm Ry}$. Electric dipole transition: (e) $\Upsilon(2-7)$ with $E_{\rm max}=340.7\,{\rm Ry}$; (f) $\Upsilon(2-7)$ with $E_{\rm max}=10^5\,{\rm Ry}$. $E_{\rm max}$ is the value used for the upper limit in the integral that defines Υ and it should in theory be ∞ . $(2.12^{-3} \equiv 2.12\ 10^{-3})$

$\log T$	(a)	(b)	(c)	(d)	(e)	(f)
6.9 7.1 7.3		$\frac{3}{3} 2.12^{-3}$ $\frac{3}{3} 1.78^{-3}$ $\frac{3}{3} 1.41^{-3}$	1.33^{-2}	1.35^{-2}	1.72^{-1}	1.76^{-1}
7.5 7.7 7.9	1.04^{-3} 7.45^{-4}	$\frac{3}{1.06^{-3}}$ $\frac{1.06^{-3}}{7.85^{-4}}$ $\frac{1}{5.63^{-4}}$	1.12^{-2} 9.12^{-3} 6.85^{-3}	1.39^{-2} 1.43^{-2} 1.47^{-2}	1.64^{-1} 1.37^{-1} 1.05^{-1}	2.18^{-1} 2.41^{-1} 2.64^{-1}

¹Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

²Mathematics Department, University of Nottingham, Nottingham NG7 2RD, UK

³Département Gian Domenico Cassini, Observatoire de la Côte d'Azur, B.P. 4229, 06304 Nice Cedex 4, France

⁴School of Science and Mathematics, Sheffield Hallam University, Sheffield S1 1WB, UK