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Abstract. Collision strengths and collisional rate param-
eters are provided for transitions among the n = 2 and
2p3` levels of C-like Fe xxi. The data have been computed
in a 52-state Breit-Pauli approximation thus accounting
for the most prominent relativistic effects. An R-matrix
close-coupling calculation comprising partial wave contri-
butions up to J = 59/2 and of order 8000 energy points
in the range up to 260 Ryd gave cross sections expected
to be accurate to better than 20% for transitions among
the n = 2 levels.
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1. Introduction

The Iron Project (IP) is an international collabora-
tion that aims primarily to generate accurate atomic
data for ions of iron group elements. The project has
produced more than 40 papers to this date. A list
is to be found on the project WWW home page at
http://www.am.qub.ac.uk/projects/iron.

The overall aims and methods of the project were sum-
marized in the first paper of the IP series (Hummer et al.
1993). The current paper is the first in a short IP sub-
series presenting collisional data for C, N and O-like iron
using essentially similar techniques and approximations.

In this connection, C-like iron Fe xxi is of particular in-
terest from both the theoretical and observational point of
view. On the observational side, lines of Fe xxi have been
seen in both solar flares (e.g. Mason et al. 1979; Cheng &
Pallavicini 1988; Cheng et al. 1979) and the coronae of cool
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stars, particularly that of Capella (Linsky et al. 1998). In
their analysis, Linsky et al. report on discrepant results
obtained from the λ1354 line as compared with the Fe xxi

EUV lines. They suggest four possible explanations for the
discrepancy, one of which, inaccurate or incomplete atomic
data, they rule out on the grounds that the available data
(Aggarwal 1991; Aggarwal et al. 1997) are good to 10%.
As we shall see, this error estimate is too optimistic due to
the omission of high energy resonant contributions to the
collisional data. In addition, the oscillator strengths pro-
vided by Aggarwal et al. (1997) differ markedly (up to six
orders of magnitude) from the earlier work of Bhatia et al.
(1987). Aggarwal et al. in fact indicate that their results
are accurate to 20% for the stronger transitions and state
that it would be desirable to have collisional data of com-
parable accuracy for the higher lying levels. Our oscillator
strengths are in good agreement with those of Aggarwal
et al. and we hope to go some way to fulfilling the lat-
ter need in the current paper. Very recently Aggarwal &
Keenan (1999) have published new results for this iron
ion on the basis of an extended Dirac R-matrix calcula-
tion but only for the region where all channels are open.
Their collision strengths are in good agreement with the
earlier work for the strong transitions but there are dis-
crepancies for the weaker transitions. Since they do not,
as yet, include resonance effects a detailed comparison is
not made here.

On the other hand, Zhang & Sampson (1996, 1997)
provide extensive tables of collision and oscillator
strengths for C-like ions including Fe xxi. They present
results for all n = 2 − 3 transitions calculated in a
relativistic distorted wave approximation. Since these
represent a complete set of data they complement the
present calculations and those of Aggarwal (1991). We
compare with these data at high energy to provide some
further indication as to the accuracy of the available
collisional data.
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The first distorted wave calculation was performed by
Mason et al. (1979). Their calculation was extended to
higher levels by Bhatia et al. (1987) although, as noted
earlier, their oscillator strengths are discrepant in many
cases. They tabulate the collision strength at a single en-
ergy. The distorted wave approximation is well suited to
this highly ionized system although it does omit resonance
effects thus underestimating collision rates. With this pro-
viso the Mason et al. data for the background cross sec-
tions are in fact reasonably accurate as has been shown by
Aggarwal (1991). On the other hand, the distorted wave
collision rates can be in error by up to an order of mag-
nitude because of this omission of resonances. The orig-
inal Mason et al. (1979) work does suffer from lack of
convergence in J for some forbidden transitions at high
energies/temperatures. Also the use of an algebraic trans-
formation from LS to intermediate coupling means that
the data for the transitions which are not allowed in LS
coupling but which are permitted in intermediate coupling
are inaccurate. The former point has been corrected by a
further distorted wave calculation undertaken by Phillips
et al. (1996) who extended the calculation further to in-
clude some n = 4 levels. They seem to have been unaware
of the earlier work of Aggarwal (1991) who obtained ac-
curate collision strengths for the n = 2 levels in a fully-
relativistic Dirac formulation using the R-matrix code of
Wijesundera et al. (1991). This calculation includes reso-
nance effects and the paper includes a detailed discussion
and comparison with the work of Mason et al. (1979).

A comparison of our own and Aggarwal’s (1991) data
will thus allow us to investigate the two different approach-
es to the relativistic problem, the Dirac and Breit-Pauli
approximations. Aggarwal (1991) has made a detailed
comparison with the distorted wave results of Mason et al.
(1979) and has already emphasized the importance of the
resonance contributions and the correct treatment of inter-
mediate coupling. The current work also demonstrates the
necessity of including resonant contributions from higher-
lying configurations, a point made by Aggarwal et al.
(1997).

In the next section, we give a short description of the
present calculation which is followed by a discussion of
the results. Here we concentrate on a comparison with
the work of Aggarwal (1991) since he has provided an ex-
cellent commentary on the earlier distorted wave results
and with the newer, comprehensive relativistic distorted
wave data of Zhang & Sampson (1996, 1997).

2. Method

The method is described in detail in the first paper in the
series (Hummer et al. 1993). A brief summary is provided
here together with data relevant to the assessment of the
accuracy of the present calculation.

The electron + target scattering problem was
solved using the close-coupling method in a Breit-Pauli

Table 1. The λ parameters for Fe xxi

n` λn` n` λn`
1s 1.43161 3s 1.28949
2s 1.43035 3p 1.23930
2p 1.34480 3d 1.37441
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Fig. 1. Comparison of the f-values obtained in the present
Fe xxi target calculation with those of Aggarwal et al. (1997)

approximation. The configuration interaction target
wavefunctions were obtained using the program su-

perstructure (Eissner et al. 1974) in a version due
to Nussbaumer & Storey (1978). The latter provides
for more flexibility in the wavefunctions through the
possible use of Coulomb functions and individual free
parameters for the one-electron orbitals. The present
target incorporated the following configurations:

2s22p2 2s2p3 2p4

2s22p3s 2s22p3p 2s22p3d
2s2p23s 2s2p23p 2s2p23d
2p33s 2p33p 2p33d

although only the first six configurations and a few of the
2s2p23s states that are energetically lower than the higher
lying 2s22p3d levels appear explicitly in the current com-
putation. This leads to a 28-term LS-coupling and a 52-
level intermediate coupling target. Of course, the neglect
of the other configurations has consequences for the accu-
racy to be expected.

All orbitals have been made spectroscopic to avoid pos-
sible problems with pseudoresonances. The free param-
eters in the Thomas-Fermi-Dirac-Amaldi potential, λn`,
obtained on minimizing the weighted sum of all the target
energies are given in Table 1 while the calculated energies
are compared with those observed (Corliss & Sugar 1982)
in Table 2. The energies are in some cases not as accu-
rate as those obtained by Mason et al. (1979) or Aggarwal
(1991) as no correlation configurations have been included
while many more spectroscopic states have been incorpo-
rated.
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Table 2. Calculated versus observed (Corliss & Sugar 1982)
target energies (cm−1)

Index Term Ecalc Eobs

1 2s22p2 3Pe
0 0 0.0

2 2s22p2 3Pe
1 82342 73850

3 2s22p2 3Pe
2 131240 117353

4 2s22p2 1De
2 266159 244560

5 2s22p2 1Pe
0 392420 371900

6 2s2p3 5S◦2 492100 486950
7 2s2p3 3D◦1 788117 776780
8 2s2p3 3D◦2 790592 777350
9 2s2p3 3D◦3 824580 803930
10 2s2p3 3P◦0 933542 916380
11 2s2p3 3P◦1 945013 924880
12 2s2p3 3P◦2 966608 942320
13 2s2p3 3S◦1 1115277 1095600
14 2s2p3 1D◦2 1156183 1126800
15 2s2p3 1P◦1 1293363 1261000
16 2p4 3Pe

2 1667455 1646300
17 2p4 3Pe

0 1761165 1735700
18 2p4 3Pe

1 1770134 1740500
19 2p4 1De

2 1853211 1817300
20 2p4 1Se

0 2091087 2048200
21 2s22p3s 3P◦0 7687260
22 2s22p3s 3P◦1 7696818
23 2s22p3s 3P◦2 7811152
24 2s22p3s 1P◦1 7836056
25 2s22p3p 3De

1 7864901
26 2s22p3p 3Pe

1 7922276
27 2s22p3p 3De

2 7926976
28 2s22p3p 3Pe

0 7937875
29 2s22p3p 1Pe

1 8012716
30 2s22p3p 3De

3 8025472
31 2s22p3p 3Se

1 8034786
32 2s22p3p 1De

2 8037228
33 2s2p23s 5Pe

1 8094750
34 2s22p3p 3Pe

2 8101009
35 2s22p3d 3F◦2 8103486
36 2s22p3d 3F◦3 8143904 8101400
37 2s22p3d 1D◦2 8149622 8098000
38 2s2p23s 5Pe

2 8150261
39 2s22p3p 1Se

0 8157038
40 2s22p3d 3D◦1 8166771
41 2s2p23s 3Pe

0 8204657
42 2s2p23s 5Pe

3 8205472
43 2s22p3d 3F◦4 8235261
44 2s22p3d 3D◦2 8241715 8187400
45 2s2p23s 3Pe

1 8244042
46 2s22p3d 3D◦3 8264769 8195000
47 2s22p3d 3P◦1 8275594
48 2s22p3d 3P◦2 8279138 8230900
49 2s22p3d 3P◦0 8284450
50 2s2p23s 3Pe

2 8302380
51 2s22p3d 1F◦3 8338459 8313600
52 2s22p3d 1P◦1 8339760 8293900

The calculated oscillator strengths may also indicate
the quality of the target wavefunctions. In Fig. 1 we
compare oscillator strengths in the length approximation
with those of Aggarwal et al. (1997) who used the civ3

configuration-interaction program of Hibbert (1975). The
figure clearly demonstrates that there are no major in-
consistencies between the two datasets and that the over-
all agreement is excellent. This is in sharp contrast to
the earlier f -values of Bhatia et al. (1987) who also used
superstructure.

Table 4. Transition probabilities for 2s22p2 − 2s2p3 lines from
this work and that of Froese Fischer & Saha (1985)

Upper Lower This work FFS
5S◦2

3Pe
1 4.210E+07 3.560E+07

5S◦2
3Pe

2 3.625E+07 3.272E+07
5S◦2

1De
2 1.343E+06 8.548E+05

3D◦1
3Pe

0 1.257E+10 1.191E+10
3D◦1

3Pe
1 6.485E+08 7.490E+08

3D◦1
3Pe

2 1.027E+08 6.727E+07
3D◦1

1De
2 2.000E+08 1.869E+08

3D◦1
1Pe

0 4.293E+07 4.191E+07
3D◦2

3Pe
1 9.636E+09 9.498E+09

3D◦2
3Pe

2 2.035E+07 5.570E+06
3D◦2

1De
2 3.841E+07 3.612E+07

3D◦3
3Pe

2 6.275E+09 6.472E+09
3D◦3

1De
2 1.060E+09 7.912E+08

3P◦0
3Pe

1 2.309E+10 2.254E+10
3P◦1

3Pe
0 4.301E+09 4.248E+09

3P◦1
3Pe

1 1.770E+10 1.642E+10
3P◦1

3Pe
2 2.515E+09 2.838E+09

3P◦1
1De

2 2.316E+08 1.959E+08
3P◦1

1Pe
0 1.640E+08 1.509E+08

3P◦2
3Pe

1 2.968E+08 3.791E+08
3P◦2

3Pe
2 2.177E+10 2.078E+10

3P◦2
1De

2 1.335E+08 5.708E+07
3S◦1

3Pe
0 9.560E+09 9.311E+09

3S◦1
3Pe

1 2.547E+10 2.538E+10
3S◦1

3Pe
2 6.306E+10 5.799E+10

3S◦1
1De

2 4.072E+08 9.426E+07
3S◦1

1Pe
0 7.092E+08 6.489E+08

1D◦2
3Pe

1 4.658E+08 3.953E+08
1D◦2

3Pe
2 8.651E+09 6.413E+09

1D◦2
1De

2 4.602E+10 4.626E+10
1P◦1

3Pe
0 2.943E+07 3.573E+07

1P◦1
3Pe

1 5.294E+09 5.963E+09
1P◦1

1De
2 6.888E+10 6.641E+10

1P◦1
1Pe

0 1.799E+10 1.753E+10

Froese Fischer & Saha (1985) performed detailed
MCHF (Froese Fischer & Saha 1983) calculations of the
2s22p2− 2s2p3 transition probabilities for C-like ions. We
compare these results with ours in Table 4. Again the
overall agreement is excellent. It should be borne in mind
that our energy levels are worst for these configurations so
that the target as a whole is better than this comparison
would indicate. The data on which Fig. 1 is based are
tabulated in Table 3 which is only available in electronic
form.

These target wavefunctions were then used to perform
an R-matrix close-coupling calculation to determine the
scattering states of the N+1 electron system. An R-matrix
package due to Eissner (unpublished) was used for this
purpose. The asymptotic solutions, in particular the scat-
tering matrices and consequently the collision strengths,
were then obtained using the standard program suite de-
scribed by Hummer et al. (1993). The use of 18 continuum
orbitals in the scattering problem for each ` value leads
to matrices of order 4500 and approximately 220 channels
for each Jπ combination.

To ensure convergence in the total angular momen-
tum values of J up to 59/2 were obtained. This is more
than sufficient for the majority of transitions but for the
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Fig. 2. The 2s22p2 3Pe
2 − 2s2p3 3D◦3 collision strength with

(filled circles) and without (x) top-up. Note that the data with
top-up converge to the correct limit

allowed transitions and a few J → J among the n = 2
levels the values so obtained had to be “topped-up” to
account for the infinity of J values omitted from the sum-
mation. For the allowed transitions an implementation of
the Coulomb-Bethe approximation due to Eissner (Eissner
et al. 1999) and based on the top-up procedure of Burke
& Seaton (1986) for LS-coupling was available. For the
slowly converging forbidden transitions a simple geomet-
ric progression was assumed but see the following section
for further discussion of this point. The collision rates or
effective collision strengths were obtained by integrating
the collision strengths in the manner suggested by Burgess
& Tully (1992) to ensure the proper behaviour at low
temperatures.

Finally, the maximum total energy of 260 Ryd was
insufficient to provide converged results at the highest
temperatures so that the present results had to be extrap-
olated to higher energies. Here we have simply assumed
the collision strength to be constant. Of course, this is not
a good approximation but at 107 K this high-energy cor-
rection is never more than 10% of the total for any given
cross section and hence the error is well within the bounds
of other systematic errors. It does, however, mean that the
present results should not be extrapolated to higher tem-
peratures without paying careful attention to this point.
Since the present results cover the maximum of the Fe20+

ionization balance determined by Arnaud & Rothenflug
(1985), this should not be necessary.

3. Results and discussion

The full set of results (Table 5) are to be found on the ftp
server of the CDS (Centre de Données astronomiques de
Strasbourg) in computer readable form. Here we show a
small selection to illustrate some of the more important
points.
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2 collision strength at low energies.
Comparison with Aggarwal’s (1991) Fig. 1 shows good agree-
ment with a cross section obtained in a Dirac approximation
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Fig. 4. The 2s22p2 3Pe
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2 collision strength at high ener-
gies. These resonances do not appear in the Aggarwal (1991)
calculation
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energies. Comparison with Aggarwal’s (1991) Fig. 2 shows
good agreement with a cross section obtained in a Dirac
approximation
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2 − 2s2p3 3D◦2 collision strength at

high energies. These resonances have been omitted from the
Aggarwal (1991) calculation
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Fig. 9. The individual J contributions to the 2s2p3 5S◦2− 2s2p3

3P◦2 forbidden transition at an energy of 118 Ryd. The conver-
gence is slow (compare with Fig. 7)
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temperature for the 2s22p2 3Pe

0− 2s2 2p2 1De
2 forbidden tran-

sition. The solid curve are the present results, dashed are from
Aggarwal (1991). The contribution of the higher lying reso-
nances is apparent

One of the more interesting aspects for this ion is
that an earlier calculation based on the Dirac formula-
tion exists. We have plotted the collision strength for the
2s22p2 3Pe

1 – 3Pe
2 transition in Fig. 3 and for the 2s22p2

1De
2−2s2p3 3D◦2 transition in Fig. 5. The scales have been

chosen to allow a direct comparison with the Dirac results
obtained by Aggarwal (1991) (see Figs. 1 and 2 on pa.
681 of that paper). It is obvious that the agreement is ex-
cellent. It should be noted, however, that the inclusion of
the n = 3 states has a pronounced effect on the overall
results as the resonances at higher energies to be seen in
Figs. 4 and 6 for the same cross sections are not present in
the earlier calculation. In the same way, resonances con-
verging to the 2s22p4` and higher thresholds are lacking
in the current work. This could be remedied by extend-
ing the calculation to include these higher thresholds but
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Fig. 11. Collision strengths from the present work compared
with those of Zhang & Sampson (1996) at an ejected electron
energy of 95.3 Ryd
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Fig. 12. Collision strengths from the present work compared
with those of Zhang & Sampson (1997) at an ejected electron
energy of 57.2 Ryd

the cost is prohibitive. In any case, the effect on the n = 2
transitions would be small at the temperatures of interest.

There are two different sorts of top-up involved in the
provision of the final data, a top-up in J , the total angular
momentum and a top-up in energy. For the most part, the
collision strengths for the maximum J value (59/2) cal-
culated explicitly are sufficient to ensure convergence. In
Figs. 7–9 we show the convergence in J for three different
types of transition at an energy of 118 Ryd. For the 2s22p2

3Pe
0−2s2p3 5S◦2 forbidden transition in Fig. 7, convergence

is rapid even at this high energy. The 2s22p2 3Pe
0 − 2s2p3

3D◦1 allowed transition in Fig. 8 on the other hand varies
very slowly but as can be seen in the next paragraph good
results may be obtained using the Coulomb-Bethe approx-
imation. Transitions of the type J → J as illustrated in
Fig. 9 for the 2s22p2 3Pe

0 − 2s22p2 1De
2 are a real problem

since they show a peak at relatively high J and a rather

slow decline. This implies that the fraction of the cross
section coming from the top-up is relatively large. In the
present case, we have simply calculated partial wave con-
tributions from a Jmax high enough so that a geometric
progression may be used. This phenomenon was also ob-
served and commented on by Aggarwal (1991) and more
recently by Eissner et al. (1999). Aggarwal set Jmax to
29/2 which is just sufficient for an energy of 100 Ryd. At
higher energies, as shown in the figure, his cross sections
are not converged so that his top-up has a larger error for
these few cases.

The top-up in energy has been made small by extend-
ing the calculation to large total energies. The error in
this contribution is perhaps relatively large but since it
only comprises a small correction at the temperatures of
interest this is unimportant.

The allowed transitions have been “topped-up” using
a scheme similar to that devised by Burke and Seaton
for LS-coupling, based on Coulomb-Bethe recursion laws
for the collision strengths (Eissner et al. 1999). It is ac-
curate as long as it is carried out for values of J that
are not too small or too large. For small values of J the
Coulomb-Bethe approximation is not applicable while at
large J values the recursion formulae become inaccurate.
The collision strength displayed in Fig. 2 shows how ef-
fective this method is. Plotted is the reduced collision
strength (Ω(E)/ ln(E/∆E + e)) versus the reduced en-
ergy (1− ln(c)/ ln(E/∆E+ c)) as suggested by Burgess &
Tully (1992). Here ∆E is the transition energy, E is the
electron energy with respect to the reaction threshold and
c is an adjustable scaling parameter. The change in scale
compresses the range in energy from 0 → ∞ to 0 → 1.
The correct cross section should, on this scale, converge
to the value 4gf/∆E at x = 1 where gf is the weighted
oscillator strength for the transition, which indeed it does.

The relativistic distorted wave calculations of Zhang &
Sampson (1996, 1997) are also available for comparison.
Overall the agreement for transitions among the n = 2
states is excellent as is evidenced by Fig. 11. Here we com-
pare all the n = 2 data at an ejected electron energy of
95.3 Ryd. The same comparison for the n = 2−3 common
to the two calculations is made in Fig. 12. Here the agree-
ment is poorer but there are no systematic differences. The
few transitions where the discrepancies are larger are due
to a few energy levels, for example the level number 36 in
the present calculation, labelled j3 by Zhang & Sampson
(1997). Here the level is strongly mixed with the 2p33p 3F◦

state. Presumably the mixture is different in the Zhang
and Sampson calculation. Such differences are bound to
arise when configuration mixing is large. The question as
to which value is more accurate can only be decided, if at
all, by even more extensive calculations. Fortunately only
a few of the more than 1300 transitions are affected so the
problem should not be serious.

In summary we may say that the present results pro-
vide cross sections that are accurate to better than 20%
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for transitions involving only the n = 2 states. Collisional
data for the 2p3` are also tabulated but will be much less
accurate, chiefly due to the absence of resonances con-
verging to higher thresholds. A more complete set of data
for the n = 3 levels is provided by the work of Zhang
& Sampson (1996, 1997) while data including the n = 4
levels are to be found in the paper by Phillips et al. (1996).
But note that the resonance contribution is lacking in
both. Lastly, although oscillator strengths have been tabu-
lated in Table 3 the values to be found in Froese Fischer &
Saha (1985) are to be preferred since they have considered
configuration interaction effects in much more detail.
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