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Abstract. — We present new calculations of cross-sections for the electron impact excitation of carbon-like ions
from N II to S XI, paying particular attention to the infrared transitions between the 2p2 3P J =0, 1,2 ground state
fine-structure levels. We also give rate coefficients, assuming a Maxwellian electron velocity distribution, in the form
of effective collision strengths for these transitions up to an electron temperature of 10° K. We also give results for
transitions involving the other 2p? terms (*D and 'S) as well as the 2s2p3 (°S) term. The present results are in
excellent agreement with a number of similar calulations available in the literature but are more comprehensive in

scope.
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1. Introduction

The spectra of many types of gaseous nebulae are domi-
nated by the presence of emission lines, many of them due
to forbidden or semi-forbidden transitions of metal ions.
In order to model such plasmas, one needs to know the
relevant atomic data namely, radiative transition proba-
bilities and electron impact excitation cross-sections. Nat-
urally, lines in the visible part of the spectrum have re-
ceived the most attention, however following the success
of recent satellite-borne ultraviolet (UV) telescopes [such
as the International Ultraviolet Explorer], considerable at-
tention has also been given to lines in the near-UV. By
contrast, lines lying in the infrared (IR) have been compar-
atively neglected, to date these observations being limited
to balloon or rocket flights and upper atmosphere aero-
plane flights. These IR lines, arising mainly from transi-
tions between fine structure levels of ground state terms,
are important as they are the dominant cooling mecha-
nism for many astrophysical plasmas. This observational
imbalance is to be redressed in the coming years due to
the forthcoming launch of IR dedicated satellite-borne
telescopes such as the Infrared Space Observatory (ISO)
or the Space Infrared Telescope Facility (SIRTF). Thus
it is to be expected that many infrared lines previously
overlooked will then be detected, indeed estimates have
already been made of line strengths for some of these
lines, see for example Spinoglio & Malkan (1992) and Voit

(1992). Therefore, an international collaborative project
has been initiated, called the Iron Project (see Hummer
et al. 1993, hereafter Paper I), the first stage of which
is to calculate in a systematic way, new electron impact
excitation rates with particular emphasis on these IR tran-
sitions. [The second, and more ambitious stage, is to cal-
culate new data for ions of iron.]

This paper reports on the results for electron im-
pact excitation rate coefficients (actually effective colli-
sion strengths) for transitions between the 2p? 3P J=0,1,2
fine structure levels of ions in the carbon iso-electronic se-
quence (ions with six electrons) from N 1I (nuclear charge
z =T)to SX1(z = 16). A complete list of the wavelengths
for these IR transitions is given in Table 1. As a corollary
to this work, we also give results for transitions involv-
ing the other 2p? terms (!D and !S) plus the 2s2p3 5S
term since a number of these transitions are important
diagnostics for astrophysical plasmas in the visible and
ultraviolet spectral regions. Previous work on the carbon
sequence ions is extensive, Hebb & Menzel (1940) per-
formed the first calculation for O 11 while Blaha (1969)
and Saraph et al. (1969) computed early estimates of
cross-sections for iso-electronic sequences, including the C-
sequence. More recent close-coupling calculations for ions
of this sequence, in which the effect of resonances are in-
cluded, have been performed mainly by two groups at Uni-
versity College London (see Eissner & Seaton (1972,1974),
Jackson (1973), Saraph & Seaton (1974), Giles (1979) and

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1994A%26AS..103..273L&db_key=AST

FT992A&AS. CT03: 227310

274

Giles et al. (1979)) and the Queen’s University of Belfast
(see Baluja, Burke & Kingston (1980), Aggarwal et al.
(1982,1983a,1983b, 1984) and Johnson et al. (1987). How-
ever, while this work provides excellent data for a number
of ions, notably C1, Ol Nev, Mgvil and SiIX, other
ions have been comparatively neglected.

Table 1. Wavelengths (in pm) of the infrared transitions
for carbon sequence ions taken from the compilations of
Wiese et al. (1966,1969) except that the values for SXI1
are estimated from the energy levels given by Martin et
al. (1990) '

Ion 3P0-3P1 3P0-3P2 3P1-3P2
N1 203.6 76.14 121.6
O 88.16 32.59 51.6
Fiv 44.39 16.30 25.75
Nev 24.15 8.99 14.32
Navi 14.32 5.3807 8.6183
Mgvi 8.8707 3.4016 5.5173
Alvinn  5.7456 2.2516 3.7027
Siix 3.8600 1.5476 2.5833
Px 2.9491 1.1652 1.9263
S X1 1.9201 0.8072 1.3927

2. New calculations

We have used the revised versions of the RMATRX codes
as described by Berrington et al. (1987), the target wave-
functions being generated by the general configuration in-
teraction code CIV3 (Hibbert 1975). The same procedure
was followed here as was used by Burke et al. (1989) for
O111 and Lennon & Burke (1991) for Ne v where further
details may be found. [In fact the results given here for
these two ions are a repeat of these previous calculations,
though using a new asymptotic code, which we give for
completeness.] All twelve target states belonging to the
2522p?, 2s2p® and 2p* configurations were included in the
target, and for the scattering calculation the diagonal el-
ements of the Hamiltonian matrix were adjusted so as
to obtain excitation thresholds in agreement with exper-
iment. All partial waves with L<4 were included which
should be sufficient to ensure convergence for the tran-
sitions of interest, except perhaps for the ! D-1S transi-
tion where there is a small contribution from higher par-
tial waves, see the discussion of Eissner & Seaton (1974)
or Aggarwal (1984) for example. We employed an energy
mesh similar to that used by Burke et al. (1989) and fine-
structure collision strengths were computed using STGFJ.
A more complete discussion of the methods used may be
found in Paper I. Assuming a Maxwellian distribution of
electron velocities, these data were then used to calculate
effective collision strengths according to the linear interpo-
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lation scheme described by Burgess & Tully (1992). Note
that formally in calculating an excitation rate one must
extrapolate the calculated cross-section to infinity. In the
present work however, for all transitions under considera-
tion, collision strengths were calculated to sufficiently high
energy to ensure that the extrapolated contribution from
higher energies to the numerical integration was negligi-
ble, even at the highest electron temperature considered.
In all cases this contribution was less than 1% of the final
result.

3. Results

The effective collision strengths are tabulated in Tables
2 through 11 and for illustrative purposes we show the
behaviour of the results for the 3Py-3P; transition as a
function of electron temperature in Figs. 1 and 2. In these
tables we have not explicitly given values for the fine struc-
ture transitions between the 3P ground state and the 'D,
1S and 58S states as these may be derived from the total
effective collision strength using the formula,
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Fig. 1. Effective collision strengths for the 3P¢-3P; transition

for N II (solid line), O III (dotted line), F IV (dashed line), Ne

V (dash-dotted line) and Na VI (dash-dot-dot-dotted line)

where J' is the J-value of the 3P level of interest and
SLj is one of !D, 1S or 3S. Note that the effective collision
strength (Y (s, 7)) for a transition from level 7 to level j is
related to the excitation rate coefficient (a(z, 7)) through,

8.63 10~ ( E,,;j

Wex — kT) Y(5,7) em3s™  (2)

ai,j) =

where E;; is the energy difference between levels i and j,
g; is the statistical weight of level 4, T' is the electron tem-
perature and k is Boltzmann’s constant. The de-excitation
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Effective Collision Strength
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Fig. 2. Effective collision strengths for the *Po-2P; transition
for Mg VII (solid line), Al VIII (dotted line), Si IX (dashed
line), P X (dash-dotted line) and S XI (dash-dot-dot-dotted
line)

rate coefficient is then given by,

-6
a(j,i) = %T(i, 7) cm3s. 3)
The enhancement of the effective collision strengths at low
temperatures for Nev and Siix is due to the influence of
resonances, as discussed by Lennon & Burke (1991), Ag-
garwal (1983a) and Aggarwal (1983b). The accuracy of
the results for these two ions depends crucially on the
reliability of the calculated positions of the autoionizing
states which give rise to these resonances. As has already
been pointed out in the references above, this is difficult
to quantify as there are as yet no experimental energy
levels available for these states. It would be useful how-
ever if better theoretical energies were to be computed
for these levels to help resolve this question. Nevertheless,
we note that the present results agree very well those of
Aggarwal (1983a, 1983b) and further, that the results for
O 11 and Mg vII are also in excellent agreement with sim-
ilar calculations performed by Aggarwal et al. (1982) and
Aggarwal (1984). Comparable calculations for the infared
transitions of the remaining ions considered here have not
yet been performed, however we have no reason to suppose
that these results are any less reliable.
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