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Abstract. The IRON Project has the goal of computing on a
large scale electron excitation cross sections and rates of astro-
physical and technological importance, using the most reliable
procedures currently available. Radiative transition probabili-
ties and photoionization cross sections not known from other
sources e. g. from the Opacity Project, will also be presented.
Although the major effort will be for ions of the iron-group ele-
ments, other ions of astrophysical interest will also be included.
In this introductory paper models and procedures to be used are
summarized and the approximations are discussed. As an ex-
ample of our computational procedures, typical results for fine
structure transitions involving electron collisions with Fe X v1i1
ions and radiative data from Fe XV1I are presented.

Key words: atomic data —electron collision rates — fine structure
transitions

1. Introduction

The paucity of reliable electron excitation cross sections or rate
coefficients has long hindered the quanitative analysis of astro-
nomical spectra. Information concerning the physical state of
the gas in objects for which LTE is not valid can be extracted
from spectra only to the extent that collisional rates coupling
the electrons to the radiating atoms and ions are known.

The primary goal of the IRON Project is to systematically
compute reliable ab-initio electron excitation cross sections for
astrophysical applications. These data will complement the very
extensive radiative data computed in the Opacity Project (cf.
Seaton et al. 1993) which is now available with the data server
TOPBASE (Cunto & Mendoza 1992). Particular attention is
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given to cross sections required for the interpretation of data
from specific space observations. Radiative transition probabil-
ities not already calculated by the Opacity Project will also be
provided, especially those for electric quadrupole and magnetic
dipole transitions as well as for electric dipole cases in which
fine structure must be taken into account.

Because of the complexity of the Project, in particular its
computational aspects, short-term and long-term goals have
been identified and are being actively pursued by an interna-
tional collaboration.

The first stage of the Project concerns the excitation rate
coefficients for fine structure transitions in the ground config-
uration of astrophysically important ions in the iso-electronic
sequences B, C, O, F, Al, Si, S, and Cl. These data are essential
for the interpretation of infra-red lines to be observed by the
Infrared Space Observatory (ISO), as well as for coronal spec-
tra. The calculations of fine structure and all other transitions in
the ground configuration of the relevant ions are substantially
completed and will be published shortly in a series of papers in
A&A, to which this paper provides an introduction.

The second stage of the Project, which concentrates on the
ions of iron, is now under way. Cross sections are now being
calculated for all transitions in all ions of iron between states
with principal quantum number up to at least n = 3 and when
possible, to n = 4. This will provide collisional rates for in-
terpretation of observations from the Solar and Heliospheric
Observatory (SOHO). In particular, reliable collisional and ra-
diative data will become available for Fe 11, which appears in
the spectra of an enormous variety of objects (cf. Viotti et al.
1988).

In general, as the capability for UV and XUV observations
grows, reliable iron-ion collisional rates will become essential,
as the spectra of many objects are dominated by iron lines. For
example, the lines of Fe 1I through Fe V11 are very prominent in
the UV spectra of O-type stars, which can be observed to great
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distances. Precise iron-group abundances can be obtained for
many other galaxies by non-LTE spectrum synthesis once the
IRON Project data becomes available.

The IRON Project is based on the use of the R-matrix method
for the solution of the many-body Schrodinger equation for both
radiative and collisional processes. It is appropriate to discuss
this method in the hierarchy of models used for calculating colli-
sional data. At high energies, and particularly for highly charged
ions, perturbative methods such as the distorted wave (D.W.) and
Coulomb-Born approximation can be efficient and reasonably
accurate; for a systematic discussion of these approximations,
see the review by Henry (1993). But at lower energies, a proper
treatment must allow for the many-body Coulomb nature of
the problem by a full quantum mechanical description in which
all electrons are treated equivalently, at least in a local region.
Ab initio calculations therefore usually employ a configuration-
interaction treatment, in which all target states strongly coupled
to the initial and final states of interest are included in the expan-
sion of the total collision wavefunction. The R-matrix method
can be considered to be a computationally efficient way of solv-
ing the resulting‘“‘close-coupling” equations (Burke & Eissner
1983).

For some of the ions to be treated in the IRON Project,
data are already available in the literature from previous close-
coupling or R-matrix calculations. These data will be evaluated
during the course of the Project, and if necessary recalculated
with higher accuracy using the new developments of the Project,
by using, for example, more accurate target wave functions, cou-
pling to higher states, a more consistent treatment of relativistic
effects, etc. A systematic approach will be used to obtain data
of comparable accuracy throughout iso-electronic sequences,
which has rarely been done before.

Without additional modification, the close-coupling or R-
matrix approach can be used reliably only for scattering energies
below the ionization threshold. To overcome this limitation, the
Intermediate Energy R-matrix Method (Burke et al. 1987) is un-
der development and is now being used for hydrogenic systems
(cf. Scholz et al. 1990). This method will be employed when
necessary to widen the scope of the Project.

The IRON Project aims to obtain highly accurate atomic
data, by systematic refinements of the theoretical models and
numerical approximations used, and by comparisons with ex-
perimental data where possible.

In Sect. 2 the theoretical and computational methods used in
this work are outlined. The calculation of radiative rates and pho-
toionization cross sections including electric dipole and mag-
netic dipole transitions is discussed in Sect. 3. In Sect. 4 the
calculation of collision rates from the cross sections and the
presentation of collision rate coefficients is summarized. To il-
lustrate the various levels of approximation at which these cal-
culations can be made, the results for Fe XVIII are discussed in
detail in Sect. 5. In the concluding section the status of work
underway is reported.
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2. Collision theory

An ab initio treatment is employed for the collision of an elec-
tron with an isolated atom or ion. Consider the time independent
Schrodinger equation

HyaV = B )

The total wavefunction U of the system with total energy F is
calculated numerically using R-matrix techniques.

For processing on a computer, pure number equations are
needed, preferably on a scale in which all quantities are of or-
der one. As an energy unit it is natural to choose the hydrogenic
ionization energy of 1Ry = (o /2) - moc® =13.6058. . . eV, re-
lated to the electron rest mass by the electromagnetic coupling
parameter or ‘fine structure constant’ o = 1/137.036. Then the
non-relativistic Hamiltonian for N target electrons plus a scat-
tering electron in the field of an atomic nucleus with electric
charge number Z reads

- N+l vz 27 N+l 2 )

= — L — — + J— .

Nl Z} - ;.mj 0)
Here radial distances are given in units of the Bohr radius ay =
h/(amgc) = 0.52918... x 1078 cm. Also, r;; = |r; — r5l,
where 7; is the radius vector of electron ¢ with respect to the
target nucleus, which is assumed to have infinite mass. Wave
numbers & are then given in units of 1/ag and the unit of time
is 79 = 2a/(ac) = 4.838 - 10~ Vs,

With the Hamiltonian (2) the Schrédinger equation (1) can
be solved in Russell-Saunders (LS) coupling, which is adequate
for electron scattering on light atoms, where both Z and the
residual charge z = Z — N are small. Orbital L and spin S
angular momenta and parity 7 are conserved separately. Thus
an ST term is labelled by 25+~

The IRON Project also involves heavy atoms, but not much
beyond Z = 30. Therefore they are treated in the low-Z Breit-
Pauli (BP) approximation (or more simply, by recoupling LS
results as in Subsect. 2.6. Here the Hamiltonian in the BP ap-
proximation is taken as

BP D
Hy = Hya + HYS + HY + Hy, 3

where H . is the non-relativistic Hamiltonian defined by Eq.
(2), together with the one-body mass correction term, the Dar-
win term and the spin-orbit term resulting from the reduction
of the Dirac equation to Pauli form. The mass-correction and
Darwin terms do not break the LS symmetry, and they can there-
fore be retained with great effect in computationally cheaper LS
calculations. Spin-orbit interaction does, however, split the LS
terms into fine structure levels labelled by J™, where J=L+S is
the total angular momentum.

Although the BP approach has been used for atoms as heavy
as mercury, a more satisfactory approach for such heavy targets
is to use the Dirac Hamiltonian. This has been developed as a
practical approach for calculating electron-atom and electron-
ion scattering by Norrington & Grant (1981, 1987). Although
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such an elaborate treatment should not be necessary for IRON
Project ions, one or two ions of Fe will nevertheless be treated
with the Dirac R-matrix method in order to check the validity
of the BP approximation that is used.

2.1. The target description

In order to carry out a collision calculation involving an atom
or ion, the N-electron target states must first be defined. The
target is described using ab initio atomic structure techniques.
Define a set of target eigenstates, and possibly pseudostates,
®; and their corresponding eigenenergies €; by the equation

(®; | Hn | ®5) = €645, “4)

where Hy is the target Hamiltonian defined by Eq. (2) with N +1
replaced by N. The pseudostates are constructed to allow, to
some extent, for the infinity of states necessarily omitted. These
eigenstates are usually written as a configuration interaction (CI)
expansion in terms of some basis configurations ¢; by

Oi(x1 XN =Y hi(Xi . XN)esi, ®)
J

where z; = r;0, = F;7;, 0; represents the space and spin coordi-
nates of the 4 th electron and the coefficients c;; are determined
by diagonalizing the target Hamiltonian in Eq. (4) (e. g. Eissner
et al. 1974; Hibbert 1975). The target state or pseudostate in
Eqgs. (4) and (5) has total orbital and spin angular momenta L,
S; and parity 7;, or J; and 7; in the relativistic case.

The ¢; are constructed from a bound orbital basis usually
consisting of self consistent field (SCF) orbitals plus some ad-
ditional pseudo-orbitals included to represent electron correla-
tion effects. Current R-matrix computer programs require that
the same orthonormal set of one-electron orbitals be used to
describe all of the target states.

The accuracy of the resulting wavefunctions depends on
both the truncation of the CI expansion (5) and the choice of
radial orbitals, and can be checked by comparing the calcu-
lated target energies and oscillator strengths with experiment.
It should be emphasized that a major, though largely unseen,
workload of the IRON Project is the development of good tar-
get wavefunctions, particulary for excited states, to use in the
collision calculations.

Two BP atomic multiconfigurational packages, CIV3 and
SUPERSTRUCTURE, are used to develop suitable targets and
to provide radial orbital functions for input to the R-matrix pro-
grams. They can also provide the target state energies and CI
coefficients.

CIV3 (Hibbert 1975) uses Slater-type orbitals (STOs) to
represent the CI functions, which are optimized by minimizing
the target energies. Either a single energy level or a weighted
sum of energies can be minimized. Normally Hartree-Fock or-
bitals as tabulated by Clementi & Roetti (1974) are taken to
define the core electrons, and CIV3 provides excited-state or-
bitals, plus any extra correlation or pseudo-orbitals needed to
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improve the target wavefunctions. Polarized pseudostates can
also be generated.

SUPERSTRUCTURE (Eissner et al. 1974; Eissner 1991)
generates radial orbitals from numerical integrations of central-
field equations. As the potential for computing spectroscopic or-
bitals one takes the solution V(r/\; Z, N) of a Thomas-Fermi-
Dirac-Amaldi statistical model (SM) potential equation, with
the scaling parameter \,; — normally close to 1.0 — deter-
mined variationally by optimizing a suitable functional, usually
the energy sum over all the spectroscopic target terms of inter-
est. Correlation orbitals can be computed in a SM potential with
A > 1, though a much better correlation potential in terms of
an effective charge, proposed by Nussbaumer & Storey (1978),
is normally used. Further options in SUPERSTRUCTURE rel-
evant to the current work are the inclusion of terms of BP or-
der in radiative operators, especially for magnetic dipole transi-
tions (Eissner & Zeippen 1981), and computation of magnetic
quadrupole transitions M2.

2.2. The collision — internal region

R-matrix theory starts by partitioning configuration space into
two regions by a sphere of radius a centred on the target nucleus
(Burke et al. 1971).

In the internal region » < a, where r is the relative co-
ordinate of the scattered electron and the target nucleus, elec-
tron exchange and correlation between the scattered electron
and the N-electron target atom or ion are important and the
(IN+1)-electron collision complex is similar to a bound state.
Consequently, a configuration interaction (CI) expansion of this
complex, analogous to that used in bound state calculations, is
adopted. In the external region, r > a, electron exchange be-
tween the scattered electron and the target can be neglected if
the radius a is chosen so that the charge distribution of the tar-
get is contained within the sphere. The fact that exchange and
correlation effects are confined to a small volume enables an
R-matrix approach to be appropriate even in the presence of
long-range Coulomb potentials.

In order to solve Eq. (1) in the internal region, introduce
basis states ); by the equation

(V| HN 1|9 )iy = B, (6)

where the integration over the radial variables is restricted to
the internal region. These basis states are expanded in the form

WYXy .. XN41) =

Y BiXi XN RN TN )T N U (TN )i
+> XK1 Xnae)bik, @

where . 4 is the antisymmetrization operator, which ensures that
the total wave function is antisymmetric in accordance with the
Pauli exclusion principle; the channel functions ®; are obtained
by coupling the target states ®;, defined by Egs. (4) and (5),
with the angular and spin functions of the scattered electron to
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form eigenstates of the total orbital and spin angular momenta
and parity; the quadratically integrable (L?) functions ;, which
vanish on the surface of the internal region, are formed from the
bound orbital basis and are included to allow for electron cor-
relation effects and to ensure completeness of the total wave
function. The continuum orbital basis functions u;, which rep-
resent the motion of the scattered electron, are non-zero on the
surface of the internal region, and will be discussed further be-
low. The coefficients a;;3 and b;x, in Eq. (7) are determined by
diagonalizing the collisional Hamiltonian.

The total wavefunction ¥ in the internal region can be ex-
panded in terms of these basis states 15 as

U= ZkakE, (®)
%

where the A are the expansion coefficients for a given total
energy F. Projecting this equation onto the channel functions
®; and evaluating on the boundary of the internal region yields
the reduced radial wave functions:

dF;
Fi(a)= ; Rij(E)- (a—d?f - ij>r=a , ©)
which introduces the R-matrix, defined by
_ 1 wikwjk B
RzJ(E) - a - Ek _ E + Rz (E)éz]a (10)

here RE(E) is a ‘Buttle’ correction, discussed futher below. The
eigenvalues F and the surface amplitudes w;, are determined
by diagonalizing the Hamiltonian matrix in Eq. (6) once for
each set of conserved quantum numbers associated with the
total angular momentum and parity of the electron-atom system.
Eqgs. (9) and (10) describe the solution of the electron atom (ion)
scattering problem in the internal region, and must be matched
to the external region solutions.

Note that Eq. (10) implies that the R-matrix is known for
all energies once the w;; and Ej have been obtained. Thus
the R-matrix method is highly efficient when large numbers of
scattering energies are required, for example, to elucidate com-
plicated resonance structures in collision strengths, or to locate
large numbers of bound states in radiative data applications.

Note also that as Eq. (7) has the form of a close coupling ex-
pansion including correlation terms, it contains all the important
features of the low energy scattering process such as electron
exchange, channel coupling, resonance effects, etc. However,
at intermediate energies, a highly correlated wavefunction can
give rise to unphysical pseudoresonances which must be aver-
aged in an appropriate way to yield the required cross section
(Burke et al. 1981).

A further point concerns target energy adjustments. It can be
shown from Egs. (2), (4) and (7) that the continuum-continuum
part of the Hamiltonian matrix defined by Eq. (6) (ie. involving
the first summation of Eq. (7)) may be split into the sum of two
matrices, one of which is diagonal and contains the eigenener-
gies of the target atom. This allows the possibility of adjusting
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the diagonal elements of the internal region matrix before diag-
onalization to reproduce the observed energy spectrum of the
target, and to correctly account for the kinematics of the contin-
uum electron in the external region. In practice, accurate ener-
gies may not be available for all the target states included in the
calculation; also it is difficult to make a consistent adjustment
to the bound-bound part of Eq. (6) (ie. involving the second
summation of Eq. (7)). Nevertheless, the incorporation of ob-
served energies into the calculation can be advantageous (for an
example, see Le Dourneuf et al. 1979), and will be considered
during the IRON project.

Finally, consider the reduced radial continuum orbitals
u;(r). The truncation of the continuum basis in Egs. (7) and
(10) is a further approximation in the R-matrix method. This
approximation is independent of that arising from the truncation
of the close coupling expansion itself, and can limit the energy
range in which the method is valid. In principle, members of
any complete set of functions satisfying appropriate boundary
conditions at 7 = 0 and r = a can be used. However, a careful
choice will lead to more rapid convergence of the R-matrix.

Here the u;(r) are obtained by solving a model single-
channel scattering problem for each angular momentum [, sub-
ject to homogeneous boundary conditions at 7 = a, following
the work of Burke et al. (1971). This approach gives accurate
results provided that a correction (Rf (E) in Eq. (10)) proposed
by Buttle (1967), to allow for the omitted high lying poles in
the R-matrix expansion, is included. Since such corrections vary
smoothly with energy, they can be fitted to an analytic function
(Seaton 1987a) for computational economy. The continuum or-
bitals are normally Lagrange orthogonalized to bound orbitals
Py, (r) of the same angular symmetry, though Schmidt orthog-
onalization is usually adopted for pseudo-orbitals. The latter
procedure usually gives better convergence, but numerical er-
rors associated with overcompleteness of the basis can arise if
the number of orbitals involved is large, for example when high
impact energies are required.

2.3. The collision — external region

The next step is the solution of the electron-atom scatter-
ing problem when the scattered electron is in the external
region r > a.

In this region electron exchange between the scattered elec-
tron and the target can be neglected if the radius a is chosen
so that the charge distribution of the target is contained within
the sphere. The scattered electron then moves in the long-range
multipole potential of the target. This potential is local, and
the solution in this region can be obtained using a standard
method for solving coupled differential equations together with
an asymptotic expansion or by using perturbation theory. By
analogy with Eq. (7) the total wave function is expanded in this
region in a close-coupling form

\I/(Xl

XN+) =
Z D; (X1 ... XN ENe 1O N Filrve) (1)
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where the ®; are the same set of channel functions used in Eq.
(7), but now no antisymmetrisation between the scattered and
target electrons is required since they occupy different regions of
space. Substituting Eq. (11) into Eq. (1) and projecting onto the
channel functions yields a set of coupled differential equations
satisfied by the reduced radial wave functions F;(r) of the form

d2 ll lz +1 27 n
(m - 2 - - +k3> Fi(r) =235, Vij(nE;(r),

t=1...n, 7> a(l2)

Here n is the number of channel functions retained in the expan-
sion (7), l; are the channel angular momenta, kf are the channel
energies defined in terms of the target energies ¢; by
kl=FE —¢ (13)
and the potential matrix V;; can be represented as an expansion
in inverse powers of 7. Often the channel coupling for electron-
ion scattering is dominated by the first non-zero multipole in the
potential, in which case the use of perturbed Coulomb functions
can lead to highly efficient algorithms (Berrington et al. 1987)
for solving Eqgs. (12). The boundary conditions at infinity are

Ej(T) r:oo \/k:_i(sin 01 5@' + COS 97, Kij), (14)
open channels (kf > 0),
k
Fij(ry ~ rYexp(——r) — 0, (15)
r—00 14
closed channels (k7 = —2%/v* < 0),

where the second index j on Fj; distinguishes the n, linearly
independent solutions of Egs. (12), n, is the number of open
channels, and 6; is the phase of the regular Coulomb function.
Eqgs. (12) are thus integrated outwards subject to the R-matrix
boundary conditions Eq. (9) at r = a and then fitted to an asymp-
totic expansion to determine the 1, X n, reactance matrix (K).

There are a number of computer programs for solving the
coupled Eqs. (12) in the external region. For the IRON Project,
anew external-region module STGFJ has been written for posi-
tive ion targets, using a perturbation technique as in the Opacity
Project module STGF (Berrington et al. 1987). STGFJ can pro-
duce K matrices in LS coupling or intermediate coupling, either
by interfacing directly with the internal region BP R-matrix pro-
gram or by transforming LS coupled K -matrices (Saraph 1972,
1978) (see subsections 2.5 and 2.6), including detailed reso-
nance structure as well as resonance averages using the Gailitis
formulation (cf. Seaton 1983). It can also produce the exter-
nal region radial functions F'(r), required for bound-free and
free-free radiative calculations.

Other external region programs can be used in place of
STGFJ to solve the external region problem. In particular,
FARM (Noble & Burke 1993), a new and highly optimized
program incorporating the R-matrix propagator techniques of
Baluja et al. (1982), Light & Walker (1976) and Light et al.
(1979), together with the accelerated asymptotic expansion
method of Noble & Nesbet (1984), for solving the coupled Egs.
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(12) can be used for both neutral and ionic targets — though
constrained at present to electron collisions in LS coupling.

It follows from the preceding discussions, that while the R-
matrix is determined by a single diagonalization in the internal
region for all energies, the coupled Egs. (12) must be solved
for 7 > a to yield the solutions F;; and hence the K -matrix,
S-matrix and cross section for each energy of interest.

2.4. The collision strength and cross section

The K -matrix contains all the information needed to derive the
observables associated with electron collisions. In particular, the
Ng X N, scattering matrix (S) is given by the matrix equation

1+iK
S_l—iK'

(16)

S-matrix elements determine the collision strength for a
transition from an initial target state ¢ to a final target state f:

Qiy = %Zw | Sip = 6ir I, an
where w = (2L + 1)(25 + 1) or (2J + 1) depending on the
coupling scheme, and the summation runs over the partial waves
and channels coupling the initial and final states of interest.

The total angular momentum (L or J) range in the sum-
mation of Eq. (17) is infinite. However, the collision strength is
normally dominated by low angular momentum partial waves, at
least at low collision energies. The exception concerns allowed
transitions, where a “top-up” procedure, based on the Burgess
sum rule, is employed to extrapolate the finite sum (Burke &
Seaton 1986).

The collision strength determines the excitation cross sec-
tion o, as a physical quantity:

2

Ta,

0
Oir = —=
gl lfwik%’

(18)
w; being the statistical weight of the initial target state (wZ =
(25;+1)(2L;+1) or 2J;+1, depending on the coupling scheme),
and k? equals the incident electron energy in Rydbergs.

A general computer program RMATRX for calculating
electron-atom and electron-ion cross sections, as well as atomic
and ionic photoionization cross sections and polarizabilities,
based on the non-relativistic Hamiltonian of Eq. (2) has been
written by Berrington et al. (1974, 1978, 1987). This program
has been widely used to calculate a large quantity of atomic
data for low Z atoms and ions, normally in the LS coupling
scheme. Further developments have been made to include rel-
ativistic effects in these programs, as described in the next two
subsections.

2.5. Relativistic effects — the BP Hamiltonian

As the nuclear charge Z increases, relativistic effects in both
the target wave function and the wave function representing
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the scattered electron become important even for low energy
electron scattering.

The conserved quantum numbers are now J M ; and 7 rather
than LS M Mg and 7, and thus the corresponding Hamiltonian
matrix analogous to the non-relativistic Eq. (6) is much larger,
increasing considerably the computational effort. An intermedi-
ate coupling representation is used in which 7, the total angular
momentum of the core, is coupled to [/ and s (the electron spin
1/2), the orbital angular momentum and spin of the added elec-
tron in the following way:
j+1=K, K+s=], (19)
where K is an intermediate quantum number.

The non-relativistic R-matrix method has been extended by
Scott & Burke (1980) to include the BP Hamiltonian given by
Eq. (3). Hamiltonian matrix elements calculated in LS coupling
are augmented and transformed as described and programmed
by Scott & Taylor (1982).

For the IRON Project, the Scott and Taylor BP package has
been merged with the non-relativistic Opacity Project package,
with switches in the input data controlling whether or not the
various relativistic options are to be included. Some limitations
of the original programs have been overcome, for example, in
the evaluation of radiative data in intermediate coupling. Also
the effective spin-orbit parameters (,; can now be calculated,
following Blume & Watson (1962), which alleviates the effects
of omitted 2-body fine structure operators where it matters most
— for closed shells.

2.6. Relativistic effects by recoupling

An alternative procedure for treating relativistic effects is based
on a recoupling of the LS transition amplitudes to obtain colli-
sion strengths between fine structure levels, as in the program

JAJOM (Saraph 1972, 1978). For elements with Z é 26 this
procedure is much more economical than the full B-P treatment
and yields collision strengths of comparable accuracy, except
near threshold. )

In its simplest form the transformation is purely algebraic:

X7T™(S Ly Jiliki, SaLaJalaks) =

Z XSS\ Lylys1, SaLalysy)

SL
C(SLJ,S1L1J1,Lik\)C(SLJ, S2LyJ,l2k2), (20)
with the usual notation for the target and electron quantum num-
bers, and k; = J; +1; such that J = k; + s;. X stands for the
K-matrix, the transmission matrix or the scattering matrix (Eq.
16) and

C (SLJ,S;LiJ;,1k) = /25 + 1)L + D)2k + 1)(2J; + 1)
x W(LLS; J;; Lik)W(LJS;s; Sk) (21)

where the functions W are Racah coefficients.
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An optional extension of Eq. (20) accounts for effects of J-J
coupling between the target terms. These can be included to first
order by a second transformation,

X‘hr(Al Jiky, Az doks) =
ESnLnssz XJN(SlLlc]]k] 5 SZL2J2k2)

Fr(Si1Ly, Ay fr,(S2L2, Az). (22)

The quantities f are term-coupling coefficients (TCCs).
They can be obtained from the eigenvectors of the target Hamil-
tonians in LS coupling and intermediate coupling (cf. Jones
1975), and are calculated in either the atomic structure programs
(Subsect. 2.1), or the R-matrix programs — an IRON Project de-
velopment.

The new intermediate coupling collision programs for pro-
cessing LS coupled matrices renormalize the TCCs so as to
conserve flux. This makes possible a consistent treatment as the
collision energy passes through the excitation threshold of each
target term. Renormalisation is called for even when all channels
are open, because of high lying correlation components of a CI
type target — a point mostly overlooked previously, although
the consequences were not serious, as the errors typically lay
well below the 1% mark.

One can go one step further at practically no extra expense
by carrying out the scattering calculation in LS coupling in-
cluding mass correction and Darwin contributions; thus part of
the relativistic corrections to the energies of the target and the
(N+1) electron states are included, which would not have been
achieved by the recoupling transformations alone; these are, of
course, still required to complete the calculation (cf. Saraph &
Storey 1993).

3. Theory of radiative transitions

The oscillator strength or photoionization cross section is pro-
portional to the generalized line strength (Seaton 1987b) de-
fined, in either length form or velocity form, by the equations

N+1 2
<\I’f|zzj|‘1’i>
j=1

Sy = (23)
and
2
N+1 9
)

In these equations w is the incident photon energy in Rydberg
units, and ¥; and W are the wave functions representing the
initial and final states respectively. The boundary conditions
satisfied by a bound state correspond to decaying waves in all
channels, whilst those satisfied by a free state correspond to a
plane wave in the direction of the ejected electron momentum
k and ingoing waves in all open channels.

Both ¥; and ¥ are now expanded in terms of the R-matrix
basis in the internal region defined by Eqgs. (7) and (8). The
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coefficients Ay; and Ay in Eq. (8) are determined by solving
the differential Eqgs. (12) in the external region, subject to the
boundary conditions discussed above, and matching to the R-
matrix boundary condition at r = a. In the case of the initial
bound states an iterative procedure for the energy has to be
adopted to achieve this matching which involves the use of a
special technique to carry out the calculation in the vicinity of
R-matrix poles (Burke & Seaton 1984; Seaton 1985).

The non-relativistic R-matrix computer program of Berring-
tonetal. (1974, 1978) has been considerably extended by Seaton
(1987b) and Berrington et al. (1987) to enable the calculation
of atomic bound-bound and bound-free photoabsorption data
for the large number of ground and excited state atoms and
ions required in the Opacity Project. The formulation was re-
stricted to E1 transitions in LS coupling. The external-region
modules for electron collisions, bound states, bound-bound data
and photoionization in the LS coupling scheme (STGF, STGB,
STGBB, and STGBEF, respectively, as described by Berrington
etal. 1987), have, for the IRON Project, been modified to accept
data also in the intermediate coupling scheme.

3.1. Inclusion of E2 and M transitions in the R-matrix program

These programs now include the formalism required to calcu-
late radiative data for E1 transitions, in both LS and interme-
diate coupling, and the accuracy obtained is generally good.
Work is in progress enabling the BP version of the R-matrix
package to calculate radiative quantities associated with elec-
tric quadrupole (E2) and magnetic dipole (M1) transitions as
well. This involves some theoretical development as well as
programming effort.

Appendix A gives details of the R-matrix method for the E2
case in the length formulation, which requires a fairly straight-
forward generalization of E1. Also in this first stage of devel-
opment an elaborate programming effort will provide for M1
transitions, employing a radiative operator correct to full low-Z
BP order, as implemented in SUPERSTRUCTURE (Eissner &
Zeippen 1981). A second stage will deal with deficiencies of
the radiative electric multipole operators in the velocity form,
adding corrections of BP order. So far one serious gap remains in
our programs, affecting near-neutral ions just highly enough ion-
ized for fine structure to matter: namely the missing two-body
fine structure terms of the BP Hamiltonian. Their absence is no-
ticeable in particular for terms associated with half-filled shells,
since ordinary spin-orbit effects vanish — it is only well above
2=30 that second order ordinary spin-orbit coupling begins to
dominate. Bridging this gap involves major developments.

4. The effective collision strength

In astrophysical and plasma applications it is often the excitation
rate coefficient (q;5) which is needed, and in this context it
is convenient to define the dimensionless thermally-averaged
effective collision strength (Y ;5) as

YD) = [ BT ) 25)
0
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where E is the kinetic energy of the outgoing electron, T' the
electron temperature in K, and k£ = 6.339 x 107° Ryd/K is
Boltzmann’s constant. The excitation rate coefficient is then

8.63 x 10-6K!/2

= . —AE/KT . 3.—1
Qs = T2 Tir(De cm’s” (26)
and the de-excitation rate coefficient is
8.63 x 107°K!/2
= X Yir(T)em’s™!, 27)

qfi = wa1/2

where w; and wy are the statistical weights of the lower and
upper states respectively, whose energy difference is AFE. The
collision stength is symmetric as well as dimensionless, 1. €. €; f
= in and Tif = Tfi.

4.1. Calculation of excitation rates and presentation of results

Although the integral in Eq. (25) is simple in form, it has to be
evaluated numerically. To do this accurately can be difficult, for
three reasons.

Firstly, the fact that € is calculated for energies up to some
finite maximum value, which depends on the approximations
made in the calculation, restricts the maximum temperature for
which T(T') can be calculated without degrading the accuracy
inherent in 2.

Secondly, the complex resonance structures in {2 require the
collision strength to be evaluated on a sufficiently fine energy
grid.

Thirdly, the evaluation of the rate coefficient at very low
temperatures is also difficult in many transitions because the
location of resonances occurring just below and directly above
the threshold must be accurately known; experimental values of
the resonance energies are often not available.

The first two points are discussed further below; the third
point will be returned to in subsection 5.1.

4.1.1. Availability of 2(F) only for finite energies

2 is normally calculated up to a finite maximum value of the
energy, say Fmax, whereas the upper limit of the integation in Eq.
(25) is infinite. There are two basic points of view in addressing
this problem. One is to restrict the evaluation of rate coefficients
to a specified finite temperature interval, determined by Ejx,
such that the accuracy of Y (7) is not affected by this limitation.
The other is to extrapolate ) to higher energies so as not to
restrict the temperature range of Y(7).

This latter method is adopted by Burgess & Tully (1992), in
which the collision strength and energy are both suitably scaled
and then plotted so that the behaviour of 2 at all energies can be
visualized on a computer screen by means of a program called
OMEUPS. Knowing the high energy Born limit value of the
collision strength allows one to span the range between Fy,,
and infinity with some confidence. A cubic spline curve is used
for this purpose. The resulting values of {2 may be added to those
of the R-matrix calculation and in this way the integral (25) is
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calculated over the entire energy range. Details of how this may
be done numerically are given in Burgess & Tully (1992).

In its present form OMEUPS requires human interaction,
which makes it more appropriate for examining a few selected
transitions. The approach also has a disadvantage that collision
strengths for dipole forbidden transitions beyond Fp,,, are in-
herently less accurate.

In subsequent papers of this series, numerical integration,
possibly using OMEUPS, will be used but Y(T") will be tabu-
lated only for temperatures corresponding to the energy interval
on which {2 is calculated.

4.1.2. Choice of energy mesh

If the electron energy E'¢ lies below an excited state threshold
€; of a ionic target with residual charge z, it is convenient to
introduce an effective quantum number v such that

2

Z
Ei—Ef=—

> 28)

Since a similar pattern of resonances occurs each time v in-
creases by unity, it is best to scan the resonances using a constant
step-length Av, rather than a constant AE'y.

In order to illustrate the errors that occur from insufficient
energy resolution and to estimate the size of the increment in
energy or effective quantum number necessary for accurate inte-
gration over a typical resonance structure, let us generate “syn-
thetic” resonances from an analytic formula which simulates a
realistic 2. The corresponding Y'(T") can then be generated with
arbitrarily high accuracy, providing a standard against which the
errors arising from any integration mesh can be easily found.

Needless to say, this procedure is completely artificial and
is not employed in our calculations of Y(T"), as complex mul-
tichannel resonance structures, which can overlap and interfere
with each other, can not in general be reduced to simple analytic
formulae.

The following formula simulates the effect of an open and a
closed scattering channel with eight Rydberg series of isolated
resonances converging to the higher state:

Q= Z (1 +Tj)(.’13j + qj)2 (b] — le/_z)

T+ r2r T 29)

7=1,8

Q, is a constant background contribution with the value
15.5/(z + 2)2, where z is the ion charge number. The notation
used in Eq. (29) follows that of Dubau & Seaton (1984), namely
zj = tan[w(v + o)1/ 75,

7; = tanh(w 3;). 30)

The constants o, 5, g;, b; and c¢; were chosen to provide a
rough fit to the resonances obtained in a two state R-matrix cal-
culation for excitation of Fe XvIII with observed term energy
splitting (to be discussed in detail in Subsect. 5.1). A graphi-
cal comparison is given in Fig. 1 for those resonances corre-

sponding to the capture of an electron into states with n = 6.
The resonances in Fig. 1(a) were calculated using the programs
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Fig. 1. a and b. Comparison of resonances caused by the capture of an
electron into states with 7 = 6 in a two term calculation for Fe XVIII: a
from an LS coupling R-matrix calculation with algebraic recoupling;
b with synthetic resonances using Eq. (29)

RMATRX and JAJOM and Fig. 1(b) shows the synthetic reso-
nances. A similar comparison over a much wider energy range
is given in Figs. 2(a) and 2(b).

The resonances are calculated in the energy range 0.0 <
E;/Ryd <6.21933, corresponding to 5.547888 < v <9.547888.
The Gailitis average is used in the interval from 6.21933 Ryd to
the S threshold at 9.3895 Ryd, with radiative damping effects
included (cf. Seaton 1983). At higher energies the two-state
collision strength is a slowly varying function of energy which
tends towards the Born limit 0.0187 (see Tully 1986). The inte-
gral in Eq. (25) is evaluated by linearly interpolating ) between
adjacent energy points and integrating analytically over each
interval in B¢ /kT.

The results obtained for Y(7") with different values for NV
(i.e. the total number of steps used to delineate the resonances
having n = 6,7,8,9) are compared in Table 1. This example
shows that even with a steplength as small as Av = 0.01 (i.e.
N = 400), errors of the order of 25 per cent occur. It may be
necessary to use an even smaller value than this in regions where
Q varies greatly and especially when resonances are narrow.

5. Detailed discussion of Fe xvii

In order to illustrate recent developments of the IRON Project,
consider the scattering of electrons from F-like Fe XVIII.

The next two subsections are concerned with fine structure
transitions in electron scattering from Fe xvi1, and bound-
bound and bound-free transitions in Fe XVII. In each case, a
fluorine-like target of nine electrons is considered. For radia-
tive calculations, the neon-like states are represented by a colli-

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993A%26A...279..298H&db_key=AST

FTI93A&A. - Z 279 ZZ98H

306

D.G. Hummer et al.: Atomic data from the IRON Project. I

Table 1. 100 x Y(T') calculated using a synthetic collision strength consisting of the parametric expression (29) to delineate the resonances in
the range from E; = 0 to Ey = 6.21933 and the 2-state close-coupling approximation for energies beyond 6.21933 Ryd. NN is the number of
equidistant steps used to span the interval from v = 5.547888 to v = 9.547888. The steplength Av = 4/N

log7" N=4000 N =3000 N=2000 N=1000 N =800 N =600 N =400
+4.0 5.783 5.784 5.784 5.785 5.783 5.783 5.783 .
+4.5 6.213 6.245 6.301 6.586 6.114 6.232 6.288
+5.0 8.389 8.490 8.565 9.063 8.360 8.822 9.833
+5.5 9.110° 9.201 9.236 9.385 9.343 9.808 11.390
+6.0 7.773 7.827 7.841 7.868 7.959 8.255 9.291
+6.5 5.528 5.549 5.555 5.559 5.609 5.734 6.169
+7.0 3.757 3.764 3.766 3.767 3.785 3.829 3.980
+7.5 2.589 2.591 2.592 2.592 2.598 2.612 2.662
+8.0 2.012 2.013 2.013 2.013 2.015 2.020 2.036
.8 T sional R-matrix wavefunction of the electron plus fluorine-like
- target, so the procedures are similar to electron scattering from
6= Fe XVIIL
4 B There are two (n=2) ground complex terms in the target:
s (1s22522p°) 2P° and (1s*2s2p®) %S, which split into three fine
5 r_ structure levels of (J)™ = (3/2)°, (1/2)° and (1/2)°. Including
‘_JJJ J . the configurations (1s22s>2p*)3(, where [ = s, p, or d, gives 28
0 I I terms or 60 levels. Including all the so-called n = 3 terms, i.e.
0 2 the above, together with (1s22s2p®)31 and (1s>2p®)31, totals 52
= terms or 112 levels. This shows that the scale of the calcula-
] 8 T | tion can change dramatically if a complete set of configurations
2 6l with one n = 3 electron is to be included, particularly for fine
_g n structure transitions.
S Previous calculations have been carried out in the 2-term
‘g - and 28-term approximations in LS coupling. Two target or-
L 2 bital sets have been used. In the 2-term Opacity Project cal-
g ‘_LJM i Eulation of Hi_bbert & Scott (1993), the orbitals are 1s, 2s, 2p,
0 0 ' > 3d, with the 3d being a correlation orbital optimized on the
(1s*2s%2p°) 2P° — (1s%2s2p®) S oscillator strength. In the 28-
8 | | | 1 | | | : term electron scattering calculation of Mohan et al. (1987a,b),
4 the 1s, 2s, 2p, 3s, 3p, 3d orbitals are all spectroscopic.
61— (c) — The next two subsections examine the different approxima-
. ~ N tions and inclusion of relativisic effects.
2= | 5.1. Electron impact excitation of fine structure transitions in
- IJLJ ‘I - Fe xvir
0 1 I | | I | R
o T 2 8 10 The fine structure transition within the ground term

4 6
Energy (Ryd)

Fig. 2. a—c. Comparison of resonances converging to the 2S threshold
in a two term calculation for Fe XvI1I: a from an LS coupling R-matrix
calculation with algebraic recoupling; b with synthetic resonances us-
ing Eq. (29); ¢ from a BP R-matrix calculation. The arrow on the energy
axis indicates the threshold for the fine structure transition

(1s*2s%2p°) ?P§ P - /, is discussed here.

The effective collision strength evaluated in the two-term
approximation (cf. Subsect. 4.1.2) in LS coupling with alge-
braic recoupling, is shown in Fig. 3. The resonances in §2 which
converge to the 28 threshold produce a noticeable bump in Y(7)
centred near 3 x 10° degrees Kelvin.

However, the fine structure splitting of the 2P° ground state,
0.9354Ryd affects the shape of Y(7T') at the lower tempera-
tures. Scattering data obtained from a calculation in LS cou-
pling differ from those obtained in a full BP treatment, in that

the latter obtain non-zero energies for the fine structure splitting
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Fig. 3. Comparison of Y(T) for (*P§ /Z—ZP‘I’ /2) in Fe Xviit: —, from a
2-term LS coupling R-matrix calculation with algebraic recoupling; -
- -, from a 3-level BP R-matrix calculation

of the levels, and slightly different effective quantum numbers
for the Rydberg series. When calculating collision rates, the
first discrepancy can be compensated for by shifting the energy
scale. The second discrepancy can have large effects on Y'(T') at
low temperatures if there are resonances close to the excitation
threshold. A BP R-matrix calculation of the resonance structure,
using the same two-term model and orbitals, is shown in Fig. 2c.
The resulting Y (7"), plotted for comparison in Fig. 3, shows de-
viations from the recoupling approach at low temperatures. The
BP R-matrix approach is the best one in such circumstances.

It should be noted that Mohan et al. (1987a and 1987b), who
used a 28-term R-matrix calculation with algebraic recoupling,
obtained an Y(7") ‘bump’ for this transition extending to higher
temperatures, due to resonances associated with the n=3 terms.
This work will be repeated in the IRON Project because the en-
ergy mesh used has been found to be inadequate for an accurate
calculation of collision rates.

5.2. Radiative data for fine structure transitions in Fe xvi

Presented here are some calculations using the new IRON
Project developments to calculate radiative data for electric
dipole (E1) transitions between fine structure levels.

The 28-term, 60 level, F-like Fe target is used here, together
with the new BP R-matrix program. Table 2 compares the g f-
values obtained for a few fine structure levels in Fe XVviI with
those from other theoretical calculations. A major advantage
of the R-matrix method is that highly excited bound states can
be treated with an accuracy similar to that for the lower bound
states.

Fig. 4 shows the cross section for photoionizing the lowest
two J = 0° fine structure levels in Fe XVII. The photon energy
range displayed is in the interval between the (15*25%2p°)*P§ 1

and 2P‘1’ , ionization thresholds. Previous calculations (e.g. for
the Opacity Project, Hibbert & Scott 1993) have been in LS cou-
pling, with the two levels assumed degenerate. This is therefore
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Table 2. gf-values for transitions involving the lowest two J = 0°
levels in Fe X V11, using the BP R-matrix method with a 60 level F-like
target. The J = 1° levels are examined up to ner=4.9, where 172 /n2;
Ryd is the calculated ionization energy relative to the (2p°)* P /2 ground
level of Fe XVIII (the two J = 0° levels have a calculated neg of 1.7645
and 2.8256 respectively). BFS and ZS are the g f-values calculated by
Bhatia et al. (1985) and Zhang & Sampson (1989)

Neff qf BFS 7S

2p»'S, — (2p°39)' Py 27115 0.122  0.111  0.112
— (2p°38)° Py 27423 0103 0.106  0.096
— (2p°3d)’ P, 29260 0.0075 0.0073 0.010
— (2p°3d)* D, 29596 0.610 0522 0.600
— (2p°3d)' P, 3.0053 234 261 248
— (2s2p%3p)* P, 3.2697  0.0349 0.036
— (2s2p%3p)' P, 3.2895 0.285 0.296
— (2p°4s)' Py 37187  0.0231 0.019
— (2p4s)° Py 3.8081 0.0177 0.013
— (2p°4d)’ P, 3.9247  0.0031 0.004
— (2p°4dy*Di 39593  0.368 0.385
— (2p’4d)' Py 40611 0.394 0.441
— (2p°58)' Py 47201  0.0098
— (2p°5s)° Py 4.9060  0.0136

Qp°3p)Y’ Py — (2p°3s)' P 27115 0.102  0.097
— (2p°3s)° Py 27423 0.0285 0.0312
— (2p°3d’° P, 2.9260 0.0095 0.0108
— (2p°3d)’ D, 29596 0203  0.215
— (2p°3d)' P, 3.0053 0.0143 0.0143
— (252p°3p)* P 32697 0.0318
— (2s2p°3p)' Py 3.2895  0.0229
— (2p’4s)' Py 37187  0.0059
— (2p’4s)’ Py 3.8081  0.0667
— (2p°4d)* P, 3.9247  0.202
— (2p°4d)* D, 3.9593  0.141
— (2p’4d)' P, 4.0611  0.0095
— (2p°5s)' Py 47201  0.0012
— 2p°5s)° Py 4.9060  0.0099

the first time that the photoionization cross section has been
calculated at energies between the fine structure levels of the
residual ion, and also the first time that photoionization cross
sections have been calculated from excited states in intermediate
coupling for a complex Fe ion.

6. Summary and outlook

The basic equations and the approximations employed in the
IRON Project have been sketched, and the computer programs
have been listed with references giving further information. Al-
though development work and program checking continues, we
are now in a position to generate accurate values for certain
types of collisional and radiative rates of astrophysical interest.

The first stage of the Project is nearly complete, namely
calculations of the fine structure collision rates in the ground
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Fig. 4. Cross sections for photoionizing the two lowest J = 0° fine
structure levels in Fe xvI11, using the BP R-matrix method with a 60
level F-like target. The photon energy range begins at the ZP‘3’ /2 ion-
ization threshold (92.828 and 36.197 Ryds, for the two initial states
shown), and shows resonances converging to the 2P‘l’ /2 threshold

configuration for elements in the iso-electronic sequences B,
C, O, F Al Si, S, and Cl. Results will be presented in further
papers of the Series — Atomic Data from the IRON Project — in
the A&A and A&AS.

The second stage, calculations for the ions of Fe as described
in the Introduction, is underway; the first results should be avail-
able in 1994. Nearby elements will also be considered. We wel-
come inquiries and suggestions for further calculations.
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Appendix A: E2 transitions in the R-matrix method

Given here, for the first time, are details of the R-matrix method
for the E2 case in the length formulation, which is a fairly
straightforward generalization of E1. This concerns in particular
the calculation of the internal region reduced matrix elements
in Egs. (23) and (24) of the form (¢, | M#||1py,), where M*]
represents the electric moment operator corresponding to an
E1 or E2 transition (k = 1 or 2 respectively). Due to the fact
that the total angular momentum and parity are not conserved
in the initial and final states there are four types of matrix el-
ement arising from the use of the R-matrix basis Eq. (7): (i)
continuum-continuum, (ii) bound-continuum, (iii) continuum-
bound and (iv) bound-bound. These are first evaluated in LS
coupling and then transformed as follows:

(i) continuum-continuum

1 1
<Ai(Jilz‘)Kz§; lelM[“]IIAj(lej)KjE; J’7r’> =

Z VI + DRI+ D)(=DE*S=I=sW(J'L' JL; Sk)

LL'SC;L;8;C;L;S;

XC(A1J1,CZLlS@lzKl%LS, JT(')C(AJ'JJ';CijSjlej%L/S; J’
1
X <Ci(Lili)L(Si%)S7r”M[N]”Cj(lej)L/(SjE)Sﬂ'/> ; (3D

(ii) bound-continuum
<LS; J|| M ||Ai(Jili)K%; J’7r’> =

Z 2J + DRJ + 1) (=)L *S—I=~

L'C;L;S;

X W(J/L/JL, S&)C(A“]z, ClL,,SzllKl%L/S, J/T('/)
X <LS7r||M[”"]||Ci(Lili)L’(Si%)S7r’> ; (32)
(iii) continuum-bound

<Ai(Jili)Ki%; Jr|| M| L'S; J’7r'> =

S V@T+ DT+ (ST

LC;L;S;
X W(J/L/JL, SKZ)C(Az Ji; CZLzslllKl%LS, J7T)
x <Ci(Lili)L(Si%)S7rl|M["]||L’S7r’> ; (33)
(iv) bound-bound

(LS; Jm|M"Y|L'S; J'n") =

V@I + DRI + D)(=D)E ST =" W (J'L' JL; S'k)

x (LS| M™||L'Sn") ; (34)
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where the notation is as described in subsection 2.6. At this
stage, the velocity operators for electric multipole radiation will
be left in their non-relativistic form.
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