XML-Based Content Management Framework for Digital Museum

Joshua J.S. HONG, National Chi Nan University TAIWAN jshong@csie.ncnu.edu.tw

Samuel CRUZ-LARA, LORIA / INRIA Lorraine Language & Dialog Project FRANCE Samuel.Cruz-Lara@loria.fr

国立暨南国際 National Chi Nan University

Contents

Preface
 The "Digital Museum Project"
 Introduction
 Main objectives
 System Architecture Issues
 Technical Approach
 Expected Results
 Synthesizing Remarks
 Questions

Preface

- This is not (yet !) a presentation from a concrete implementation of a project
- A Rather, this is a presentation outlining the main objectives of a collaboration (NCNU - LORIA INRIA Lorraine) that is only at the very beginning
- ▲ National Science Council (Taiwan) & INRIA (France) Collaboration

The "Digital Museum Project"

▲ A Digital Library (DL) focuses on conserving, cataloguing, accessing, and tracking the usage of digitized material

On the other hand, a Digital Museum (DM), other than being a simple digital archive, indeed emphasizes more on providing users with highly educational and motivating exhibitions

▲ To efficiently transform the organized media objects deposited in the digital archive into educational experiences, there is a need of a novel Content Management Framework (CMF)

A This novel CFM shall be used for organizing digital collections and for quickly selecting, integrating, and composing objects from the collection to produce exhibitions of different presentation styles

National Chi-Nan University

▲ A Digital Museum of Taiwanese Butterflies

National Chi-Nan University

▲ The Lanyu Digital Museum on-line Exhibition

National Chi-Nan University

XML-based hypermedia digital museum content management framework

LORIA - INRIA Lorraine

The SILFIDE Network : An Interactive Service for Using, Studying, Distributing and Sharing Natural Language Resources"

Serveur Interactif, pour la Langue Française, son Identité, sa Diffusion et son Etude

LORIA - INRIA Lorraine

ELAN : "European Language Activity Network" (Multi-Lingual Information Society)

LORIA - INRIA Lorraine

XML-based documents management and networked environments

▲ MULTI-LINGUAL INFORMATION SOCIETY

European Language Activity Network
 http://solaris3.ids-mannheim.de/elan/
 http://www.loria.fr/projets/MLIS/ELAN/

- Companies, research teams and individuals involved in language engineering or in undertakings such as translating, dictionary making or philology require LARGE corpora, lexicons and similar electronic resources
- On the other hand such linguistic databases have already been created for most European languages

- ▲ It can be observed that the need exists, the product exists and yet the two have until now rarely been brought together !
- A This paradox can largely be explained by the fact that the language resources in question often cannot be accessed EASILY and usually cannot be exploited using STANDARDIZED procedures

MLIS-ELAN is a distributed language resources system offering access to existing resources to their potential users throughout Europe

 MLIS-ELAN should provide standardized resources for the following languages : Albanian, Belo Russian, Bulgarian, Catalan, Croatian, Czech, Danish, Dutch, English, Estonian, Finnish, French, German, Greek, Hungarian, Irish, Italian, Latvian, Lithuanian, Polish, Portuguese, Romanian, Russian, Serbian, Slovakian, Slovene, Spanish, Swedish and Uzbek

Main Goals

▲ To build a distributed architecture for accessing and sharing natural language resources that are stocked in heterogeneous Data Bases

▲ To define a "Common Query Language" used by all servers in the network

The First ELAN Network

100% XML

- ▲ XML is obviously used for normalizing the representation of natural language resources
- ▲ XML is also used for normalizing the protocols we use to exchange information between all servers in the network

ELAN Network Architecture

Three main actors :
 Network Management Unit
 LR Servers
 Java enabled Web browsers, client side

Network Management Unit

▲ Keep information about all LR servers

- *▲ For each server* :
 - ▲ its name
 - ★ its address (Internet URL or IP address)
 - ▲ a profile of server contents
- ▲ Every LR server consult the NMU to :
 - ★ get the list of registered servers on the network
 - ▲ get information about a specific server
- Contact regularly every server to check their status (offline or online)

NMU Architecture

Based on a CORBA Clients-Server architecture

NMU Administration

- ▲ A single person or instance is responsible for adding, removing and updating servers on the network
- \rightarrow 2 tools are provided :
 - ▲ Command line administration
 - ▲ fast to use
 - ▲ can be used from a distant computer (via telnet protocol)
 - ▲ Administration with a graphical user interface ▲ more user-friendly

27

Servlet Concept

It's a Java application, running on the server, and waiting for HTTP queries
 It works like a CGI (Common Gateway Interface) with the following advantages :
 Hardware and OS independent
 Take advantage of the power of the Java API

28

LR server's architecture

- A LR server is basically based on a java http server that implements the Servlets technology
- ▲ The purpose of these servlets include :
 - ▲ Implementing communication with the NMU
 - ▲ Dispatching of the queries to each selected server
 - ▲ Parsing of the queries and interaction with the linguistic resources database
 - ▲ Loading and saving of workspaces
 - ▲ General administration and users database management

Communication with the NMU

- This is implemented through a specific servlet which is the CORBA client from the NMU point of view
- ▲ This servlet purpose is to :
 - Contact the NMU to answer queries related to the other servers (list, name, address, status,...)
 - ▲ Maintain a local servers database in the case the NMU server is unavailable

Communication with the NMU

- ▲ Sample queries sent to the NMU Client Servlet :
 - Getting the list of servers :

 Http://myServer.a.com/NmuClientServlet

 Getting the status of the myServer server :

 Http://myServer.a.com/NmuClientServlet?server status=server_name

Dispatching of linguistic queries

- ▲ A servlet get the query from the client
 ▲ It's purpose is :
 - ▲ To dispatch the query to each selected server
 - ▲ To get the answer from each server
 - ▲ To format the answers in a MIME document which is sent back to the client

32

Workspaces

▲ There's one workspace per client. \checkmark It's an XML document that contains : ▲ The list of selected servers ▲ The user preferences (language...) ▲ One or more saved meta-data corpus ▲ An history of user actions \checkmark A specific servlet is used to load and save the user's workspaces

Communication between LR servers

Implemented through the HTTP Protocol
 assure that every server is reachable from any point of the network
 simplifies the installation of the server (no firewalls problems)

From the client side

- ▲ A server is reachable through a simple Web browser, via the HTTP protocol
- ▲ After user registration, every interaction with the server take place in a multi-purpose applet :
 - ▲ selection of the servers
 - ▲ queries on meta-data and selection of linguistic resources
 - ▲ use of linguistic tools on the selected corpus
- The graphic interface is based on the Swing technology

The "Digital Museum Project"

Main Objectives

Development of crucial techniques for the efficient producing, storage, and retrieval of XML-based documents
 XLink, XPointer, XSLT, XSL FO, RDF,...

Main Objectives

Development of a general XML-based distributed software architecture for accessing and sharing multimedia resources

▲ SOAP & Web Services, ...

Main Objectives

Design of optimal synchronized hypermedia document models for digital museum exhibition

▲ SMIL, ...

System Architecture Issues

A multilevel architecture :
 Administrator Level
 Organizing LOCAL media
 Exhibition Design Level
 Organizing exhibitions
 Final User Level
 Accessing exhibitions

System Architecture Issues

Administrator Level

Administrator Level

Content Management System
 Multimedia Resources Database Feeding
 Multimedia Resources Integration
 Digitization Process
 Multimedia Resources Composition

Exhibition Design Level

Exhibition Design Level

A Building exhibitions by collecting multimedia resources allover the network ▲ Selection of the working servers ▲ Selection of multimedia resources ("Shopping Cart Paradigm") ▲ Manipulation of the selected resources "Local" access for all multimedia resources

Final User Level

Final User Level

 Web Browser-based access
 "Direct" access to exhibitions containing "distributed multimedia resources"

Technical Approach

 XML-based technologies
 XML, XSLT, XSL FO, SMIL, RDF, ...
 Platform Independent Software Applications
 Java

Distributed Software Applications
SOAP

Resource Description Framework (RDF)
 Meta Data
 Ontologies
 Semantics

▲ XML will be used for normalizing the presentation of multimedia resources (SMIL, ...)

▲ XML will also be used for normalizing the protocols we will use to exchange information between all servers in the network (SOAP, ...)

XSLT & XSL FO
 Transformations
 Style Sheets
 PDF documents

Expected Results

Implementation of a Java-XML-based digital museum content management system functioning properly both taiwanese and french computer/network environment

Synthesizing Remarks

▲ Three major axes :

- ▲ Design of Optimal Synchronized Hypermedia Documents for Digital Museum Exhibitions (SMIL, ...
- ▲ Optimal Storage and Retrieval of XMLbased Documents (XML, XLink, XPointer, XSLT, XSL FO, RDF, ...)
- ▲ XML-based Distributed Software Architectures (SOAP & Web Services)

