next up previous contents
Next: OnOff Up: Generalities Previous: Estimator philosophy   Contents

Decomposing the elapsed telescope time

If the PI wants to reach the same rms noise ( \ensuremath{\sigma_\ensuremath{\mathrm{}}}) on \ensuremath{n_\ensuremath{\mathrm{source}}} sources (they must share the same calibrator sources), during a given elapsed telescope time ( \ensuremath{t^\ensuremath{\mathrm{}}_\ensuremath{\mathrm{tel}}}), we have

\begin{displaymath}
\ensuremath{\epsilon_\ensuremath{\mathrm{tel}}}\, \ensurema...
...nsuremath{t^\ensuremath{\mathrm{}}_\ensuremath{\mathrm{cal}}},
\end{displaymath} (2)

where \ensuremath{t^\ensuremath{\mathrm{}}_\ensuremath{\mathrm{cal}}} is the time required to acquire the calibration information and \ensuremath{n_\ensuremath{\mathrm{cal}}} the number of such calibration suits.

The calibration time can be written as

\begin{displaymath}
\ensuremath{t^\ensuremath{\mathrm{}}_\ensuremath{\mathrm{ca...
...ath{t^\ensuremath{\mathrm{cal}}_\ensuremath{\mathrm{onoff}}}),
\end{displaymath} (3)

where \ensuremath{t^\ensuremath{\mathrm{}}_\ensuremath{\mathrm{pointing}}}, \ensuremath{t^\ensuremath{\mathrm{}}_\ensuremath{\mathrm{focus}}}, \ensuremath{t^\ensuremath{\mathrm{}}_\ensuremath{\mathrm{skydips}}} and \ensuremath{t^\ensuremath{\mathrm{cal}}_\ensuremath{\mathrm{onoff}}} are respectively the typical times needed to perform a pointing, focus and skydip measurement and an OnOff measurement on a calibrator. \ensuremath{\eta_\ensuremath{\mathrm{cal}}} is a multiplicative factor $(> 1)$ which takes into account the time to slew to the pointing and/or focus source as well as the possible need to do such calibrations twice in a row. The number of such calibrations is dictated by the fact that the maximum duration between two such calibration suits must be \ensuremath{d_\ensuremath{\mathrm{cal}}}. This gives
\begin{displaymath}
\ensuremath{n_\ensuremath{\mathrm{source}}}\,\ensuremath{t^...
...{\mathrm{cal}}}} \le \ensuremath{n_\ensuremath{\mathrm{cal}}}.
\end{displaymath} (4)

The time spent per source ( \ensuremath{t^\ensuremath{\mathrm{}}_\ensuremath{\mathrm{source}}}) is linked to the integration time ( \ensuremath{t^\ensuremath{\mathrm{}}_\ensuremath{\mathrm{\ensuremath{\sigma_\ensuremath{\mathrm{}}}}}}) through the succession of \ensuremath{n_\ensuremath{\mathrm{subscan}}^\ensuremath{\mathrm{tot}}} subscans, each subscan having an on-source integration time of \ensuremath{t^\ensuremath{\mathrm{}}_\ensuremath{\mathrm{subscan}}} and an overhead time of \ensuremath{t^\ensuremath{\mathrm{overhead}}_\ensuremath{\mathrm{subscan}}}. The \ensuremath{n_\ensuremath{\mathrm{subscan}}^\ensuremath{\mathrm{tot}}} subscans are grouped into scans, with an additional overhead time of \ensuremath{t^\ensuremath{\mathrm{overhead}}_\ensuremath{\mathrm{scan}}} per scan. If one scan can contain at most \ensuremath{n_\ensuremath{\mathrm{subscan}}^\ensuremath{\mathrm{max}}} subscans, the number of scans ( \ensuremath{n_\ensuremath{\mathrm{scan}}}) and the residual number of subcans ( \ensuremath{n_\ensuremath{\mathrm{subscan}}^\ensuremath{\mathrm{res}}}) are computed through

$\displaystyle \ensuremath{n_\ensuremath{\mathrm{scan}}}$ $\textstyle =$ $\displaystyle \ensuremath{\mathrm{floor}}\ensuremath{\displaystyle\left( \frac{...
...suremath{n_\ensuremath{\mathrm{subscan}}^\ensuremath{\mathrm{max}}}} \right) },$ (5)
$\displaystyle \ensuremath{n_\ensuremath{\mathrm{subscan}}^\ensuremath{\mathrm{res}}}$ $\textstyle =$ $\displaystyle \ensuremath{n_\ensuremath{\mathrm{subscan}}^\ensuremath{\mathrm{t...
...{scan}}}\ensuremath{n_\ensuremath{\mathrm{subscan}}^\ensuremath{\mathrm{max}}}.$ (6)

We note that the actual number of scan is $\ensuremath{n_\ensuremath{\mathrm{scan}}}+1$ when $\ensuremath{n_\ensuremath{\mathrm{subscan}}^\ensuremath{\mathrm{res}}}\ge
1$ and \ensuremath{n_\ensuremath{\mathrm{scan}}} when $\ensuremath{n_\ensuremath{\mathrm{subscan}}^\ensuremath{\mathrm{res}}}= 0$. The time spent per source is thus given by
$\displaystyle \ensuremath{t^\ensuremath{\mathrm{}}_\ensuremath{\mathrm{scan}}}$ $\textstyle =$ $\displaystyle \ensuremath{n_\ensuremath{\mathrm{subscan}}^\ensuremath{\mathrm{m...
...}}) + \ensuremath{t^\ensuremath{\mathrm{overhead}}_\ensuremath{\mathrm{scan}}},$ (7)
$\displaystyle \ensuremath{t^\ensuremath{\mathrm{}}_\ensuremath{\mathrm{source}}}$ $\textstyle =$ $\displaystyle \ensuremath{n_\ensuremath{\mathrm{scan}}}\,\ensuremath{t^\ensurem...
...uremath{t^\ensuremath{\mathrm{overhead}}_\ensuremath{\mathrm{scan}}} \right] }.$ (8)


next up previous contents
Next: OnOff Up: Generalities Previous: Estimator philosophy   Contents
Gildas manager 2014-07-01