next up previous contents
Next: Comparison Up: Position switched Previous: Relation between and   Contents

Time/Sensitivity estimation

This paragraph describes the algorithm to do a time/sensitivity estimation for a position-switched On-The-Fly observation.

Step #1: Computation of \ensuremath{n_\ensuremath{\mathrm{beam}}} and \ensuremath{n_\ensuremath{\mathrm{submap}}}

\ensuremath{n_\ensuremath{\mathrm{beam}}} is just computed as the ratio $\ensuremath{A_\ensuremath{\mathrm{map}}}/\ensuremath{A_\ensuremath{\mathrm{beam}}}$. Using Eqs. [*] and [*], we obtain
\begin{displaymath}
\ensuremath{n_\ensuremath{\mathrm{submap}}}= \frac{\ensurem...
...\mathrm{}}}\, \ensuremath{t_\ensuremath{\mathrm{submap}}}}.
\end{displaymath} (37)

Using this equation, we start to compute \ensuremath{n_\ensuremath{\mathrm{submap}}} for $\ensuremath{t_\ensuremath{\mathrm{submap}}}=
\ensuremath{t_\ensuremath{\mathrm{stable}}}$ and $\ensuremath{v_\ensuremath{\mathrm{area}}^\ensuremath{\mathrm{}}}= \ensuremath{v_\ensuremath{\mathrm{area}}^\ensuremath{\mathrm{max}}}$. We want to enforce the integer character of \ensuremath{n_\ensuremath{\mathrm{submap}}} in a way which decreases the product $\ensuremath{t_\ensuremath{\mathrm{submap}}}\,\ensuremath{v_\ensuremath{\mathrm{area}}^\ensuremath{\mathrm{}}}$. To do this, we use
\begin{displaymath}
\ensuremath{n_\ensuremath{\mathrm{submap}}}= 1+\texttt{int(}\ensuremath{n_\ensuremath{\mathrm{submap}}}\texttt{)}.
\end{displaymath} (38)

Eq. [*] ensures that $\ensuremath{t_\ensuremath{\mathrm{submap}}}\,\ensuremath{v_\ensuremath{\mathrm{...
...{stable}}}\,\ensuremath{v_\ensuremath{\mathrm{area}}^\ensuremath{\mathrm{max}}}$. The value of \ensuremath{v_\ensuremath{\mathrm{area}}^\ensuremath{\mathrm{}}} must be decreased so that Eq. [*] is enforced.
Step #2: Computation of \ensuremath{t_\ensuremath{\mathrm{tel}}} or \ensuremath{\sigma_\ensuremath{\mathrm{}}}
We use the following equations in descending order to compute the elapsed telescope time and in ascending order to compute the rms noise level:
$\displaystyle 1.$   $\displaystyle \ensuremath{\ensuremath{t_\ensuremath{\mathrm{sig}}}^\ensuremath{...
...th{\mathrm{}}}^2\,\ensuremath{d\nu}\,\ensuremath{n_\ensuremath{\mathrm{pol}}}},$ (39)
$\displaystyle 2.$   $\displaystyle \ensuremath{t_\ensuremath{\mathrm{onoff}}}= \ensuremath{\ensurema...
...mathrm{submap}}}}+\sqrt{\ensuremath{n_\ensuremath{\mathrm{beam}}}} \right) }^2,$ (40)
$\displaystyle 3.$   $\displaystyle \ensuremath{\eta_\ensuremath{\mathrm{tel}}}\,\ensuremath{t_\ensuremath{\mathrm{tel}}}= \ensuremath{t_\ensuremath{\mathrm{onoff}}}.$ (41)

Step #3: Computation of derived quantities


$\displaystyle 1.$   $\displaystyle \ensuremath{n_\ensuremath{\mathrm{on/off}}}= \frac{\ensuremath{n_\ensuremath{\mathrm{beam}}}}{\ensuremath{n_\ensuremath{\mathrm{submap}}}},$ (42)
$\displaystyle 2.$   $\displaystyle \ensuremath{n_\ensuremath{\mathrm{cover}}}= \frac{\ensuremath{\en...
...\mathrm{on/off}}}+\sqrt{\ensuremath{n_\ensuremath{\mathrm{on/off}}}} \right) },$ (43)
$\displaystyle 3.$   $\displaystyle \ensuremath{\ensuremath{t_\ensuremath{\mathrm{on}}}^\ensuremath{\...
...h{t_\ensuremath{\mathrm{submap}}}}{\ensuremath{n_\ensuremath{\mathrm{on/off}}}}$ (44)
$\displaystyle 3.$   $\displaystyle \ensuremath{\ensuremath{t_\ensuremath{\mathrm{off}}}^\ensuremath{...
...ensuremath{\mathrm{beam}}}\,\sqrt{\ensuremath{n_\ensuremath{\mathrm{on/off}}}}.$ (45)

Step #4: Is \ensuremath{n_\ensuremath{\mathrm{cover}}} an integer number?
The interpretation of the above equation to compute \ensuremath{n_\ensuremath{\mathrm{cover}}} has two cases.
  1. $\ensuremath{n_\ensuremath{\mathrm{cover}}}< 1$. This means that either the user tries to cover a too large sky area in the given telescope elasped time (sensitivity estimation) or the telescope need a minimum time to cover \ensuremath{A_\ensuremath{\mathrm{map}}} at the maximum velocity possible with the telescope and this minimum time implies a more sensitive observation than requested by the user (time estimation).
  2. $\ensuremath{n_\ensuremath{\mathrm{cover}}}\ge 1$. \ensuremath{n_\ensuremath{\mathrm{cover}}} will generally not be an integer, we can think to decrease \ensuremath{t_\ensuremath{\mathrm{submap}}} from \ensuremath{t_\ensuremath{\mathrm{stable}}} to obtain an integer value. However, this must be done at constant $\ensuremath{A_\ensuremath{\mathrm{submap}}}(= \ensuremath{v_\ensuremath{\mathrm{area}}^\ensuremath{\mathrm{}}}\,
\ensuremath{t_\ensuremath{\mathrm{submap}}})$. Decreasing \ensuremath{t_\ensuremath{\mathrm{submap}}} thus implies increasing \ensuremath{v_\ensuremath{\mathrm{area}}^\ensuremath{\mathrm{}}}. It is not clear that this is possible because of the constraint $\ensuremath{v_\ensuremath{\mathrm{area}}^\ensuremath{\mathrm{}}}
< \ensuremath{v_\ensuremath{\mathrm{area}}^\ensuremath{\mathrm{max}}}$. Another way to deal with this is to keep \ensuremath{t_\ensuremath{\mathrm{submap}}} to its maximum value and to adjust \ensuremath{t_\ensuremath{\mathrm{tel}}} (sensitivity estimation) or \ensuremath{t_\ensuremath{\mathrm{sig}}} and thus \ensuremath{\sigma_\ensuremath{\mathrm{}}} (time estimation) to obtain an integer value of \ensuremath{n_\ensuremath{\mathrm{cover}}}. However, this implies a change in the wishes of the user. The program can not make such a decision alone and we will only warn the user. Indeed, the worst case is when \ensuremath{n_\ensuremath{\mathrm{cover}}} is changing from 1 to 2 because this can decrease the sensitivity by a factor 1.4 (sensitivity estimation) or double the elapsed telescope time (time estimation). The larger the value of \ensuremath{n_\ensuremath{\mathrm{cover}}} the less harm it is to enforce the integer character of \ensuremath{n_\ensuremath{\mathrm{cover}}}.


next up previous contents
Next: Comparison Up: Position switched Previous: Relation between and   Contents
Gildas manager 2014-07-01