31 Dec 2001, version 0.2

VOTable: A Proposed XML Format for Astronomical Tables

Robert Hanisch, Space Telescope Science Institute, USA
Bob Mann, Royal Observatory Edinburgh, UK
Tom McGlynn, NASA Goddard Space Flight Center, USA
François Ochsenbein, Observatoire Astronomique de Strasbourg, France
Alex Szalay, Johns Hopkins University, USA
Andreas Wicenec, European Southern Observatory, Germany
Roy Williams, California Institute of Technology, USA

1. Introduction

The VOTable format is a proposed XML standard for representing a table. In this context, a table is an unordered set of records, each of a uniform format. Each record is a sequence of (arrays of) primitive data types, together with metadata about the meaning of the data. The format is derived from the Astrores format [1], and backward compatible with that standard, except for (a) Fields are no longer allowed outside a Table, and (b) the Format attribute – used for automatic parsing of sexagesimal input – is no longer supported. Astrores was modeled on the FITS Binary Table format [2].

1.1. Example

A simple example of a VOTable document is:

<?xml version=”1.0”?>
<!DOCTYPE ASTRO SYSTEM "http://. . ./VOTable.dtd">
<ASTRO ID="v1.0">
<DEFINITIONS>
 <COOSYS ID="myJ2000" system="eq_FK5" equinox="2000." epoch="2000."/>
</DEFINITIONS>
<RESOURCE>
<TABLE>

<NAME>Stars</NAME>

<DESCRIPTION>Some bright stars</DESCRIPTION>

<FIELD ID=”Star Name” ucd=”ID_MAIN”

datatype=”A” width=”10”></FIELD>

<FIELD ID=”RA” ucd=”POS_EQ_RA”

unit=”degrees” datatype=”E” precision=”5”></FIELD>

<FIELD ID=”Dec” ucd=”POS_EQ_DEC”

unit=”degrees” datatype=”E” precision=”5”></FIELD>

<DATA><CSV colsep=”|”><STREAM>
Procyon|114.827242|5.227506
Vega|279.234106|38.782992
 </STREAM></CSV></DATA>

</TABLE>
</RESOURCE>
</ASTRO>

This table shows the positions of two stars, each with a name and two floating point numbers as coordinates. The star names have a fixed length of 10 characters, (shorter names will be padded by trailing blanks). The floating-point numbers (RA and Dec) are in degrees, and assumed to have five significant digits (precision=”5”), irrespective of the number of digits presented in the data. The frame of the coordinate system is specified with the COOSYS element.

1.2. XML

VOTable is constructed with XML (extensible Markup Language), a powerful standard for structured data throughout the Internet industries. It derives through simplification from SGML, which has been a standard in technical documentation for many years. XML consists of elements and payload, where an element consists of a start tag (the part in angle brackets), the payload, and an end tag (with angle brackets and a slash). Elements can contain other elements. Elements can also contain attributes (keyword-value combinations), such as the FIELD elements above.

The payload may be in two forms: parsed or unparsed character data. Examples are:

<text>François</text>
<text><![CDATA[a <= (b & c)]]></text>

In the first example, the sequence ç is interpreted as part of the ISO/IEC 10646 character set, and translates to an accented character, so that the text is “François”. The second example uses the special CDATA sequence so that the characters <, >, and & can be used without interpretation; in this case, any ASCII characters are allowed except the terminating sequence “]]>”. For more information, see any book on XML.

1.3. Syntax policy

The element names are in uppercase in order to help the reading. The attribute names are preferably in lowercase (with an exception for the ID attribute). Element and attribute names are further distinguished in this paper by being in fixed-width font.

1.4. Remarks about the ID attribute

[image: image3.wmf]StarName

(10-char string)

is a: ID_MAIN

RA

(degrees)

(4-byte float, 5 s.f.)

is a:

POS

_EQ_RA

Dec

(degrees)

(4-byte float, 5 s.f.)

is a:

POS

_EQ_DEC

Procyon

Vega

114.827242

279.234106

5.227506

38.782992

Table

Stars

 (Some bright stars)

Fields

Metadata

Data

VOTable uses the ID attribute defined by Xpointer standard in order to refer to other elements in the document. The attribute ID can take any authorized values in XML, and each ID must be unique in the XML document. For example ref="apple" refers to the element that contains ID="apple" in the current XML document. Elements that may have ID tags are ASTRO, COOSYS, FIELD, INFO, LINK, RESOURCE, TABLE, and VALUES. Elements that support the ref attribute (and can point to those with ID) are: CELL, FIELD, and TABLE.

The ID is different from the name attribute in that (a) the ID attribute must be unique (or else the document is considered invalid in the XML sense), whereas names need not be unique; and (b) There should be support in the parsing software to look up references and extract the relevant element with matching ID. It should be noted that this referencing mechanism will not work unless the parser uses a validating parser.

2. Semantics of a VOTable

In this section we define the semantics of a VOTable, and in the next sections its syntax. A table has two sections, metadata and data – see figure. The metadata describes the table itself (name, title, description, and an optional coordinate system), and the nature of each field (column) of the table is defined by the FIELD element. There may also be STREAM objects that are intended to connect either the table or its records to external data sources through local files, ftp, http, gridftp, or other protocols. The address of the remote object is written in the URL syntax, protocol://resource:port/file.

A Table in this context is illustrated below. The top line of the table is a class definition (metadata) for all the instances (also known as rows, or records) of data in the subsequent lines. The VOTable document may contain the data part of the table, or it may not. If it does not contain data, there may be a pointer to the data; this would be best if the data is large, as XML tools may become unreliable for very large data sets. Each row of the table is a set of instances of primitive types, such as float, int, doubleComplex, and so on – see table below for complete list. There may also be strings and blobs for holding binary content. These may have the same length in each row, or each instance may have a different length. The semantic meaning of a blob (eg.”This is a JPEG image”) is not defined by VOTable, but it may be written into the description or name fields, or the ID mechanism discussed above.

Each FIELD (or column) of the table is defined by the nature of the primitive data, and by name, description, units, and info attributes. There is also a Unified Content Descriptor (UCD), which is a reference into a glossary created at CDS Strasbourg. Another attribute is the precision, which expresses the implied accuracy (number of significant digits) of each datum in this column.

The list of FIELD elements (or column definitions) can be thought of as a template for the records (or rows) of the table, which follow in the DATA section. The records are fundamentally unordered, meaning that a table with the records in a different order is equivalent to the original. Ordering of records is a presentation property of the data rather than a structural one.

We should note that a VOTable document may be used to express a question as well as an answer. Suppose there is a table that has no data – it has all the metadata (header) fields, as above, but no actual data rows. Then we could think of this document as a form that is to be filled in, as a request for data; the specification of class as an implicit request for instance.

2.1. FITS Binary Tables

VOTable is completely compatible with the FITS Binary Table format. The semantics of any FITS binary table file may be completely represented with VOTable. The metadata for the FITS file may be converted to VOTable, and the FITS file pointed to by the VOTable.

3. Metadata Content

The Table is written in XML as a NAME, TITLE, DESCRIPTION, LINK fields, that describe the nature of the data in the table. The LINK field may be parsed (see section 3.4). There is may be a COOSYS element, that contains specific information on the astronomical coordinate system that is being used. The rest of the metadata describes the FIELDs that together make up each row of the table.

A field has several attributes, including the informational NAME, TITLE, DESCRIPTION, and LINK, as well as VALUES, that can express limits and ranges of the values that the corresponding cell can contain, such as minimum, maximum, or enumeration of possible values.

The FIELD must contain a datatype attribute, which expresses the nature of the data that is in the cells of this column of the table. This determines how data is read and stored internally. If it is not present, an exception is thrown.

Each table cell may contain more than one of the specified datatype, and this is specified with the arraysize datatype. The default value of this attribute is 1, meaning a single value in the table cell. In the case of the Bit datatype, the length represents the number of 8-bit bytes that are used. Character strings will be padded with null characters if they are shorter than the specified length.

Unicode is a way to represent characters that is an alternative to ASCII. It uses two bytes per character instead of one, it is strongly supported by XML tools, and it can handle a large variety of international alphabets. Therefore VOTable supports not only ASCII strings (datatype=”A”), but also Unicode (datatype=”U”).

Variable-size arrays are also supported through the attribute called type. By default, this has the value “fixed”, and the array size is given by the arraysize attribute. If type=”variable”, however, the corresponding table cells can contain a variable-width array. For example, a JPEG image could be associated with each row of the table by using datatype=”B” and type=”variable”. However, it should be pointed out that the storage and processing of uniform-length strings and blobs will be much more efficient that that of variable-length.

For details of the exact meaning of these data types, please see section 7.

3.1. Numerical Accuracy

The VOTable format is meant for transferring, storing, and processing tabular data, it is not intended for presentation purposes. Therefore (in contrast with Astrores) we generally avoid giving rules on presentation, such as formatting. However, we retain the “width” attribute of the FIELD, which is meant as a hint to the presentation system about the number of characters to use for input or output of the quantity.

But there is a semantic difference between a number written as “5.12” and one that is written “5.1200”. In that the former implies three significant digits of accuracy, and the latter five digits. Therefore the number of digits to show is not purely a presentation matter, but part of the metadata content of the number.

VOTable therefore provides the precision attribute in the FIELD element to express the number of significant digits, or equivalently, the log of the implied error estimate of the numbers in the column. More control is available through an initial character: setting this to “E” rather than the default “F” implies that the precision measures is relative error (significant figures) rather than absolute error (decimal places). Thus precision=”E5” means an implied relative error 10-5, and precision=”5” or “F5” means an implied absolute error 10-5.

3.2. Units

The quantities in a column of the table may have physical units, and this is specified by the units attribute of the FIELD. Examples are:

units=”cm^-2 s^-1 keV^-1”

units=”erg s^-1”

3.3. Unified Content Descriptors

The CDS in Strasbourg has used the metadata from thousands of astronomical tables to make a hierarchical glossary of the scientific meanings of the data in those tables [3]. Of 1600 entries in the glossary, here are a few typical examples.

PHOT_INT-MAG_B

Integrated total blue magnitude

ORBIT_ECCENTRICITY

Orbital eccentricity

STAT_MEDIAN

Statistics Median Value

INST_QE

Detector's Quantum Efficiency

The ucd attribute of the FIELD is to hold this information.

3.4. VALUES element

The VALUES element of the FIELD is designed to hold subsidiary information about the nature of the data in the field. It may have MIN and MAX elements, and it may contain OPTION elements. The latter contains name and value attributes, and may also contain more OPTION elements, so that a hierarchy of keyword-values pairs may be associated with each field.

There may also be a null attribute. If this is present, and a table cell takes this value, it is assumed to mean that no data is present. For example, there may be a convention that missing values in a table are expressed with –99, in which case the NULL element would be set to this. Therefore any cell in this field with this value is assumed to have no data.

There may also be an attribute called “invalid”, meaning that this value should be used in case a table cell cannot be read. If, for example a row of a table should be all integers, and its CSV representation is:

34, 45, 11, ---, 76

In this case, the unparsable value “---“ will cause an exception to be thrown, unless the relevant field definition contained something like:

<VALUES invalid=”-99”>

in which case the cell with the bad text would contain the integer –99 instead.

3.5. LINK Fields as URL Templates

The LINK element is to provide pointers to other documents or data servers on the Internet through a URL. In Astrores, the LINK element may be part of the RESOURCE, TABLE or FIELD elements. The href attribute of the LINK is meant to provide a URL that is at least valid syntactically, even though there need be no assurance that the link will actually connect and deliver data. It may be that a strange protocol is implied that the parser does not know about, for example gridftp://server/file. However, parsers are expected to understand at least the file, http and ftp protocols.

The gref attribute is meant for a higher-level protocol of some type, perhaps a logical name for a data resource, perhaps a GLU reference [4].

In some cases, there is additional semantics for the LINK element, where the href and gref attributes are not a simple URL, but rather a template for creating URL’s. Depending on the content-role attribute of the LINK, and the nature of the parent element, the ID tags from the table may be substituted into the template to create an implicit new column, as explained in the next section.

3.5.1. Pattern-matching and Substitution

When a LINK element appears within a TABLE, there is extra functionality implied. The href or gref attributes may not be a simple link, but instead a template for a link. For example, in the table of section 1.1, we might have:

<LINK href=”http://us-vo.org/lookup?Star=${Star Name}&RA=${RA}&DE=${Dec}”/>

The implication is that the text is seen in the context of a particular row of the table, and a substitution filter is applied. If the selected row of the table is the first one, the result of the substitution would be:

http://us-vo.org/lookup?Star=Procyon&RA=114.827&DE=5.227

Whenever the pattern ${…} is found in the original link, the part in the braces is compared with the set of name attributes of the fields of the table. If a match is found, then the value from that field of the selected row is used in place of the ${…}. If no match is found, no substitution is made. Thus the parser makes available to the calling application a value of the href and gref attributes that depends on which row of the table has been selected. Another way to think of it is that there is not a single link associated with the table, but rather an implicitly defined new column of the table. This mechanism can be used to connect each row of the table to further information resources.

The action attribute in this release of the standard is simply a string. In a future release, it may gain an implied string substitution filter as with href and gref.

The purpose of the link is defined by the content-role attribute. The allowed values are query, hints, and doc. The first implies that string substitution should be used as defined above, and the latter two imply first that no substitution is needed, and that the link points to either information for use by the application (hints) or human-readable documentation (doc).

3.6. Type Attribute
The type attribute of the FIELD may carry values that express the status of the field when the enclosing table is a query, rather than a data document. If the value is “noquery”, then the marked field is ignored in the creation of the action query – this field does not belong to the form described by the set of FIELDs. A computed column (value computed from other FIELDs) is a typical example.

If type=”trigger”, then the marked field contains data necessary for correct LINK generation. If for instance only the columns “RA” and “Dec” are asked, but a link requires the knowledge of a “RecordNumber” to be operational, the result contains the additional column “RecordNumber” flagged as a “trigger” field.
4. Data Content

While the bulk of the metadata of a VOTable document is in the FIELD elements, the data content of the table is in a single DATA element. The data is organized in “reading” order, so that the content of each row appears in the same order as the order of the FIELD tags, with each row having the same number of items as there are FIELD tags.

The figure below shows how the abstract table is rendered into the VOTable document. First the data is serialized, as XML or CSV (character separated values, or a FITS binary table, or a simple binary format). This data stream may then be encoded, perhaps for compression or to convert binary to text. Finally, the data stream may be put in a remote file with a URL-type pointer in the VOTable document; or the table data may be embedded in the VOTable. [image: image1.wmf]Table

Serialization

TABLEDATA

CSV

FITS

BINARY

Encoding

gzip

base64

dynamic

VOTable

.

xml

or by pointer

Embedded data

The data section of theVOTable document is created through a data pipeline. The abstract table is first serialized by one of several methods, then Encoded for compression or other reasons. It may be embedded in the xml file (local data), or it may be remote data.

4.1. Data Serialization

The serialization elements and their attributes are:

4.1.1. TABLEDATA

This element is a way to build the table in pure XML, and is the only serialization method that does not allow an encoding or a remote data stream. It contains ROW elements, which in turn contain CELL elements. An example:

<TABLEDATA>
<ROW> <CELL>Procyon</CELL> <CELL>114.827242</CELL> <CELL>5.227506</CELL> </ROW>
<ROW> <CELL>Vega</CELL> <CELL>279.234106</CELL> <CELL>38.782992</CELL> </ROW>
</TABLEDATA>

While this serialization has a high overhead in the number of bytes, it has the advantage that XML tools can manipulate and present the table data directly.

Each item in the CELL tag is passed to a reader that is implicitly defined by the datatype attribute of the corresponding FIELD, which attempts to read the object from it. If it reads a value that is the same as the NULL value for that field, then the cell is assumed to contain no data.

The reader may not succeed, for example if we try to parse the string 245.6h756 into a string, then we succeed, but we cannot parse it into a float. In this case, the value from the attribute named “invalid” is used from the field, if present, or a NaN is used for the floating point FIELDs, or an exception is thrown for non-floating-point fields.

The TABLEDATA element may have an attribute to define the handling of arrays in table cells and complex numbers. If a CELL contains an array or complex number, it should be encoded as multiple numbers with a separator character between them. This character may be defined by the sep attribute, for example:

<TABLEDATA sep=”,”>

The default value for this is a blank. However in the case of character and Unicode strings, no separators are required. Here is an example of a table with arrays in the table cells:

<TABLE>

<FIELD ID=”Name” datatype=”A” arraysize=”10”></FIELD>

<FIELD ID=”fixed-array” datatype=”E” type=”fixed” arraysize=3></FIELD>

<FIELD ID=”variable-array” datatype=”J” type=”variable”></FIELD>

<DATA><TABLEDATA sep=”,”>
 <ROW>
 <CELL>Apple </CELL><CELL> 1.62,4.56,3.44 </CELL><CELL> 67,65,4,5,77,77 </CELL>
 </ROW></ROW>
 <CELL> Orange </CELL><CELL> 2.33,4.66,9.53 </CELL><CELL> 39,847,46,44 </CELL>
 </ROW>
 </TABLEDATA></DATA>

</TABLE>

4.1.2. CSV

The CSV (Character Separated Values) element contains the table data as a single XML element, with a specified separator character (colsep attribute) between the items of a row, a specified row separator (rowsep attribute) that separates rows of a table, and a number of headlines (headlines attribute), that are ignored by the reading software. For example:

<DATA><CSV headlines=”2” colsep=”:” sep=”,”>
This line ignored
This line ignored
Apple : 1.62,4.56,3.44 : 67,65,4,5,77,77
Orange : 2.33,4.66,9.53 : 39,847,46,44
</CSV></DATA>

In order to parse this, we first remove the headlines, which are ended by newline characters (‘\n’ in C). The text is now tokenized according to the row separator character (by default it is newline). Each row of the table is tokenized by the column separator character (by default it is tab, hexa 09). Each of the resulting strings is trimmed, meaning that consecutive whitespace characters are removed from the beginning or end of each token string. Each resulting string is then used to read a number in the same way as the previous section.

The CSV element may also use the sep attribute, as in the previous section, to define how complex numbers and arrays are serialized.

4.1.3. FITS

The FITS format for binary tables is well-used in astronomy [2], and its structure is a major influence on the VOTable specification. Metadata is stored in a header section, followed by the data. The metadata is substantially equivalent to the metadata of the VOTable format. One important difference is that VOTable does not require specification of the number of rows in the table, an important freedom if the table is being created dynamically from a stream.

The VOTable specification does not define the behavior of parsers with respect to this doubling of the metadata. A parser may ignore the FITS metadata, or it may compare it with the VOTable metadata for consistency, or other possibilities.

4.1.4. BINARY

The Binary format is intended to be easy to read by parsers, so that additional libraries are not required. It is just a sequence of byte strings, the length of each string corresponding to the datatype attributes of the FIELD elements in the metadata. The binary format consists of a sequence of records, with no header bytes, no alignment considerations, no block sizes.

Table cells may contain arrays of primitive types, each of which may be of fixed or variable length. In the former case, the number of bytes is the same for each instance of the item, as specified by the arraysize attribute of the FIELD. If all the fields are have type=”fixed”, then each record of the binary format has the same length, as the sum of arraysize times the length in bytes of the corresponding datatype.

In the case of variable-length arrays of primitives, however, the Binary format becomes more complex. Each record has first a part for the fixed-length fields, (as well as eight bytes for each of the variable-length fields), followed by a section for the variable length fields. The eight bytes for the variable-length field is interpreted as two four-byte integers that point into the data section following the fixed-length record, one being the number of primitives in the array, the other the byte-offset from the end of the current record.

[image: image2.wmf]A

p

p

l

e

1.62

4.56

3.44

6

0

67

65

4

5

77

77

O

r

a

n

g

e

2.33

4.66

9.53

4

0

39

847

46

44

Fixed

-

length

Pointer to variable

-

length

Variable

-

length data

The figure shows the byte layout for this binary format for the same data as the examples above. Each record has a ten-byte character array, then an array of three four-byte floats, then a variable number of four-byte integers, represented as the number of integers (6 and 4 in the two records shown), then the offsets from the end of the fixed-length record (zero for both records).

4.2. Data Encoding

As a result of the serialization, the table has been converted to a byte stream, either text or binary. If the TABLEDATA serialization is used, then those elements are directly in the XML document, and there is no possibility for encoding. However, if one of the other serializations is used, we might encode the result to compress it, or for other reasons.

In this version of VOTable, it is not possible to encode individual columns of the table: The whole table must be encoded in the same way.

In order to use an encoding of the data, it must be enclosed in a STREAM element, whose attributes define the nature of the encoding. The encoding attribute is a string that should indicate to the parser how to undo the encoding that has been applied. Parsers should understand and interpret these values at least:

· encoding=”gzip” implies that the data following has been compressed with the gzip filter, so that gunzip or similar should be applied.

· encoding=”base64” implies that the base64 filter has been applied, to convert binary to text.

The parser may also respond to the string dynamic, implying that the data is in a remote resource (see below), and the encoding will be delivered with the header of the data. This occurs with the http protocol, where the MIME header indicates the type of encoding that has been used. The default value of the encoding attribute is the null string, meaning that no encoding has been applied. In future releases, we will allow more complex strings in the encoding attribute, allowing combinations of encoding filters and a way for the parser to find the software needed for the decoding.

4.3. Remote Data

If the encoding of the data produces text, or if the serialization is naturally text-based, then it can be directly embedded into the XML document. However, if the data encoding produces binary, or if the data is very large, it may be preferable to keep the data separate from the metadata. In this case, there is STREAM with the attribute remote=”yes”.

The text contained in the STREAM element is then interpreted as the location of the data, rather than the data itself. The location is specified in a URL-type syntax, for example:

<STREAM remote=”yes” href=”ftp://server.com/mydata.dat”/>
<STREAM remote=”yes” href=http://webserver.com/mydata.dat/>
<STREAM remote=”yes”>gridftp://server.com/mydata.dat</STREAM>
<STREAM remote=”yes”>file://mydata.dat</STREAM>

The examples are the well-known anonymous ftp, and http protocols. Also is an example of a Grid-based access to data, and finally a local file, which is on the local file system. If there is an href attribute in the STREAM, then that is used as the location of the data; if not, then the text content of the STREAM element is used. In future releases, we expect to expand the specification of remote data beyond the URL syntax, invoking perhaps XML-based virtual data requests, or SOAP envelopes as the data provider.

There are two attributes of the STREAM element that may be useful. The expires tag is for when the VOTable is part of a pipeline of data processing, when data is being dynamically created and stored in temporary space, in which case it may be deleted after a certain time limit. The expires attribute expresses when a remote resource may cease to become valid, and is expressed in the same way as in the HTTP specification [4], for example:

<STREAM expires=”Wed, 26 Feb 1997 08:21:57 GMT”>

The rights attribute expresses authentication information that may be necessary to access the remote resource. If the VOTable document is suitable encrypted, this attribute could be used to store a password.

5. Document Structure

The VOTable document consists of a single all-containing element called ASTRO, which may contain a DESCRIPTION and a number of INFO elements which contain strings, a DEFINITIONS element, and a RESOURCE element.

5.1. DEFINITIONS element

This element may contain a definition of a coordinate system, stored in a COOSYS element, that is a system, (eg. Eq_FK5, galactic), and an equinox and epoch. A custom coordinate system may be specified as the “xy” value of the system, possibly with the attributes “x” and “y” for additional information. There may also be a INFO element that may contain user-specific data. Each of these may have an ID attribute, that can be referenced with the ref attribute of a field. Thus we can achieve grouping of fields (by having members of the group reference the same part of the definitions sections. We can also extend the definition of a field by adding user-specific data.

5.2. RESOURCE element

There may be multiple RESOURCE elements, and each of these may contain a NAME. TITLE, INFO and DESCRIPTION elements, as well as DEFINITIONS (as above). There may be LINK elements to provide URL-type pointers that give further information.

The main ingredient of the RESOURCE element is one or more TABLEs. These are described in sections 3-5 of this document.

6. Differences from Astrores

Data formats

Addition of two binary formats for the data section:

· FITS Binary Table, and

· Binary format, which is essentially the FITS format but without the header, except that while the FITS specification requires a keyword for the number of records in the table, the BINARY format does not.

Remote Data

In VOTable the data part of the table may be in a different file, on a server on another machine, or at the end of some other sort of socket. However the XML metadata document expresses the meaning and syntax of the data sufficiently well to read and understand the data when necessary. The data element may contain a STREAM elements; if the attribute remote=”yes”, then a URL syntax expresses the location. Note that the syntax file:// can be used for local files.

Encoded data

VOTable has the possibility that the data part of the document has been encoded. The encoding attribute of a STREAM is expressed by an arbitrary string, but parsers should correctly interpret "gzip" and "base64". The encoding may also be written as "dynamic", in which case the parser should discover the encoding dynamically as it reads the headers of the data resource, for example the http headers.

However an exception is that data of type TABLEDATA (full XML tagging) may not be encoded.

Data expiration and Rights Management

In VOTable, the remote STREAM element used to point to remote data should allow two further attributes:

· expires implies that the data under the link will not be available after a given time, as with the HTTP specification.

· rights is a string that will hold information about who is allowed to access the data under the link.

datatype, precision, and width
The variety of datatypes that may appear in tables is expanded, including 64-bit integers and complex types. The precision attribute is used to express the nature of the implied error in a quantity. The width attribute is used only as a hint to a presentation system about how much horizontal space to use.

Format Attribute Removed

We suggest that the format attribute of the field element be removed from the specification. This has been used for example as format="%RAh %RAm %Ras” so that sexagesimal values can be read from the table. We feel that the effort of fully defining and implementing the formatting language is greater than the utility of the attribute.

Version and Namespace

The root element of the document (ASTRO) now may have a version attribute, anticipating future version control of VOTable documents. Furthermore, the tags used in the VOTable document should be part of an explicit XML Namespace, so that they can be used as part of a larger document, for example a report or web page. Without the namespace specification, there could be a collision of names (eg. TABLE). This change involves only one line of the table.

7. Adapted from FITS Binary Table Specification

Logical If the value of the datatype attribute specifies data type L, the contents of the field shall consist of ASCII T indicating true or ASCII F, indicating false. A 0 byte (hexadecimal 0) indicates an invalid value.

Bit Array If the value of the datatype attribute specifies data type X, the contents of the field shall consist of a sequence of bits starting with the most significant bit; the bits following shall be in order of decreasing significance, ending with the least significant bit. A bit array shall be composed of an integral number of bytes, with those bits following the end of the data set to zero.

Byte If the value of the datatype attribute specifies data type B, the field shall contain a sequence of zero or more members, composed of unsigned bytes. The most significant byte shall be first. Within each byte the most significant bit shall be first, and subsequent bits shall be in order of decreasing significance. An exception is thrown for invalid values, unless the invalid attribute has been set, in which case it is used instead.

Character If the value of the datatype attribute specifies data type A, the field shall contain a character string of zero or more members, composed of ASCII text. This character string may be terminated before the length specified by the repeat count by an ASCII NULL (hexadecimal code 00). Characters after the first ASCII NULL are not defined. A string with the number of characters specified by the repeat count is not NULL terminated. Null strings are defined by the presence of an ASCII NULL as the first character.

Unicode Character If the value of the datatype attribute specifies data type U, the field shall contain a character string of zero or more members, composed of Unicode text. Each character is represented by two bytes, in order that many non-Latin alphabets can be represented.

Unsigned 8-Bit Integer If the value of the datatype attribute specifies data type B, the data in the field shall consist of an array of unsigned 8-bit integers. This array of bytes is also known as a “blob”, and can be used for storing general byte data.

16-Bit Integer If the value of the datatype attribute specifies data type I, the data in the field shall consist of twos-complement signed 16-bit integers, contained in two bytes. The most significant byte shall be first. Within each byte the most significant bit shall be first, and subsequent bits shall be in order of decreasing significance. An exception is thrown for invalid values, unless the invalid attribute has been set, in which case it is used instead.

32-Bit Integer If the value of the datatype attribute specifies data type J, the data in the field shall consist of twos-complement signed 32-bit integers, contained in four bytes. The most significant byte shall be first, and subsequent bytes shall be in order of decreasing significance. Within each byte, the most significant bit shall be first, and subsequent bits shall be in order of decreasing significance. An exception is thrown for invalid values, unless the invalid attribute has been set, in which case it is used instead.

64-Bit Integer If the value of the datatype attribute specifies data type K, the data in the field shall consist of twos-complement signed 64-bit integers, contained in eight bytes. The most significant byte shall be first, and subsequent bytes shall be in order of decreasing significance. Within each byte, the most significant bit shall be first, and subsequent bits shall be in order of decreasing significance. An exception is thrown for invalid values, unless the invalid attribute has been set, in which case it is used instead.

Single Precision Floating Point If the value of the datatype attribute specifies data type E, the data in field shall consist of ANSI/IEEE-754 [15] 32-bit floating point numbers. All IEEE special values are recognized. The IEEE NaN is used to represent invalid values, unless the invalid attribute has been set, in which case it is used instead.

Double Precision Floating Point If the value of the datatype attribute specifies data type D or F, the data in the field shall consist of ANSI/IEEE-754 64-bit double precision floating point numbers. All IEEE special values are recognized. The IEEE NaN is used to represent invalid values, unless the invalid attribute has been set, in which case it is used instead.

Single Precision Complex If the value of the datatype attribute specifies data type C, the data in the field shall consist of a sequence of pairs of 32-bit single precision floating point numbers. The first member of each pair shall represent the real part of a complex number, and the second member shall represent the imaginary part of that complex number. If either member contains a NaN, the entire complex value is invalid.

Double Precision Complex If the value of the datatype attribute specifies data type M, the data in the field shall consist of a sequence of pairs of 64-bit double precision floating point numbers. The first member of each pair shall represent the real part of a complex number, and the second member of the pair shall represent the imaginary part of that complex number. If either member contains a NaN, the entire complex value is invalid.

8. Sample VOTable Document

<!DOCTYPE ASTRO SYSTEM "VOTable.dtd">

<ASTRO version="v0.9" xmlns="http://vizier.u-strasbg.fr/VOTable">

<DESCRIPTION about=http://astrores.xml.org/ASTRO-Spec-0.2 />

<DEFINITIONS>

<COOSYS ID="myJ2000" system="eq_FK5" equinox="2000." epoch="2000."/>

</DEFINITIONS>

<!-- The output is made of several tables related together -->

<RESOURCE ID="I254">

<NAME>GSC1.2</NAME>

<TITLE>The HST Guide Star Catalog, Version 1.2 (Lasker+ 1996)</TITLE>

<DESCRIPTION>
 This is an excerpt of the GSC1.2. This version was re-reduced with PPM catalogue; see more details about the GSC catalogues at http://www-gsss.stsci.edu/gsc/gsc.html .

</DESCRIPTION>

<TABLE ID="gsc_out">

<NAME>gsc.out</NAME>

<TITLE>Output from GSC1.2 Server</TITLE>

<DESCRIPTION>
Default result of GSC1.2 Server around a target</DESCRIPTION>

<FIELD ID="_r" ucd="POS_ANG_DIST" unit="arcmin" datatype="F" width="7" precision="4">

<NAME>_r</NAME>

<DESCRIPTION>Distance from target NGC40</DESCRIPTION>

<VALUES type="actual">

<MIN value="0.0"/>

<MAX value="10.0"/>

</VALUES>

</FIELD>

<FIELD ID="gsc" datatype="A" arraysize="10" ucd="IDENT">

<NAME>GSC-Id</NAME>

<TITLE>Unique object id</TITLE>

<DESCRIPTION>The GSC-Id is made of 10 digits, 5 representing the place number, and 5 the object number on the plate.
</DESCRIPTION>

</FIELD>

<FIELD ID="ra" ref="myJ2000" ucd="POS_EQ_RA" unit="deg" datatype="F" precision="5">

<NAME>RA(J2000)</NAME>

<DESCRIPTION>Right ascension in J2000, epoch of plate</DESCRIPTION>

</FIELD>

<FIELD ID="dec" ref="myJ2000" ucd="POS_EQ_DE" unit="deg" datatype="F" precision="5">

<NAME>Dec(J2000)</NAME>

<DESCRIPTION>Declination in J2000, epoch of plate</DESCRIPTION>

</FIELD>

<FIELD ID="pos_err" unit="arcsec" datatype="F" precision="1" ucd="ERROR">

<NAME>PosErr</NAME>

<DESCRIPTION>Mean error on position</DESCRIPTION>

</FIELD>

<FIELD ID="Pmag" ucd="PHOT_PHG_MAG" unit="mag" datatype="F" precision="2">

<NAME>Pmag</NAME>

<DESCRIPTION>photographic magnitude (see n_Pmag)</DESCRIPTION>

</FIELD>

<FIELD ID="e_Pmag" ucd="ERROR" unit="mag" datatype="F" precision="2">

<NAME>e_Pmag</NAME>

<DESCRIPTION>Mean error on photographic magnitude</DESCRIPTION>

</FIELD>

<FIELD ID="class" ucd="CLASS_CODE" datatype="I">

<NAME>Class</NAME>

<DESCRIPTION>Class of object (0=star; 3=non-stellar)</DESCRIPTION>

<VALUES type="actual">

<OPTION name="star" value="0"/>

<OPTION name="galaxy" value="3"/>

</VALUES>

</FIELD>

<LINK content-role="doc" title="documentation" href="http://vizier.u-strasbg.fr/viz-bin/Cat?I/254"/>

<DATA>

<TABLEDATA>
<ROW><CELL>0.0146</CELL><CELL>0430201297</CELL><CELL>4.7766</CELL><CELL>72.8474</CELL><CELL>3.6</CELL><CELL>8.59 </CELL><CELL>0.20</CELL><CELL>0</CELL></ROW>
<ROW><CELL>0.9704</CELL><CELL>0430200545</CELL><CELL>5.4576</CELL><CELL>72.6528</CELL><CELL>0.2</CELL><CELL>12.18</CELL><CELL>0.34</CELL><CELL>0</CELL></ROW>
<ROW><CELL>0.9730</CELL><CELL>0430200545</CELL><CELL>3.9867</CELL><CELL>72.9484</CELL><CELL>0.2</CELL><CELL>12.09</CELL><CELL>0.20</CELL><CELL>0</CELL></ROW>
<ROW><CELL>1.5843</CELL><CELL>0430202363</CELL><CELL>8.9587</CELL><CELL>72.6635</CELL><CELL>0.2</CELL><CELL>14.38</CELL><CELL>0.34</CELL><CELL>0</CELL></ROW>
<ROW><CELL>2.8586</CELL><CELL>0430200269</CELL><CELL>5.4847</CELL><CELL>72.8272</CELL><CELL>0.3</CELL><CELL>14.96</CELL><CELL>0.20</CELL><CELL>3</CELL></ROW>
<ROW><CELL>2.9198</CELL><CELL>0430200153</CELL><CELL>10.4746</CELL><CELL>72.4542</CELL><CELL>0.2</CELL><CELL>12.89</CELL><CELL>0.20</CELL><CELL>0</CELL></ROW>
<ROW><CELL>2.9215</CELL><CELL>0430200153</CELL><CELL>6.9484</CELL><CELL>72.1162</CELL><CELL>0.2</CELL><CELL>13.06</CELL><CELL>0.34</CELL><CELL>0</CELL></ROW>
<ROW><CELL>3.0487</CELL><CELL>0430202336</CELL><CELL>4.7586</CELL><CELL>72.9837</CELL><CELL>0.2</CELL><CELL>14.38</CELL><CELL>0.34</CELL><CELL>0</CELL></ROW>
<ROW><CELL>3.2247</CELL><CELL>0430200121</CELL><CELL>7.9585</CELL><CELL>72.5565</CELL><CELL>0.2</CELL><CELL>12.39</CELL><CELL>0.21</CELL><CELL>0</CELL></ROW>
<ROW><CELL>3.2269</CELL><CELL>0430200121</CELL><CELL>7.9484</CELL><CELL>72.5874</CELL><CELL>0.2</CELL><CELL>12.50</CELL><CELL>0.34</CELL><CELL>0</CELL></ROW>

</TABLEDATA>

</DATA>

</TABLE>

</RESOURCE>
</ASTRO>
9. The DTD for VOTable

<!ELEMENT ASTRO (DESCRIPTION?, DEFINITIONS?, INFO*, RESOURCE+)>
<!ATTLIST ASTRO

ID ID #IMPLIED

version CDATA #IMPLIED

>
<!ELEMENT DESCRIPTION (#PCDATA)>
<!ATTLIST DESCRIPTION

about CDATA #IMPLIED

>
<!ELEMENT DEFINITIONS (COOSYS*)>
<!ELEMENT INFO (#PCDATA)>
<!ATTLIST INFO

ID ID #IMPLIED

name CDATA #IMPLIED

value CDATA #IMPLIED

>
<!ELEMENT RESOURCE (DEFINITIONS*, NAME?, TITLE?, DESCRIPTION?, INFO*, TABLE*, LINK*)>
<!ATTLIST RESOURCE

ID ID #IMPLIED

>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT TABLE (NAME?, TITLE?, DESCRIPTION?, COOSYS*, FIELD*, LINK*, DATA?)>
<!ATTLIST TABLE

ID ID #IMPLIED

ref IDREF #IMPLIED

>
<!ELEMENT FIELD (NAME?, TITLE?, DESCRIPTION?, VALUES*, LINK?)>
<!ATTLIST FIELD

ID ID #IMPLIED

unit CDATA #IMPLIED

datatype (L | X | B | I | J | A | U | F | D | C | M | K) #IMPLIED

precision CDATA #IMPLIED

width CDATA #IMPLIED

arraysize CDATA #IMPLIED

ref IDREF #IMPLIED

name CDATA #IMPLIED

ucd CDATA #IMPLIED

type (hidden | no_query | trigger) #IMPLIED

>
<!ELEMENT VALUES (MIN*, MAX*, OPTION*)>
<!ATTLIST VALUES

ID ID #IMPLIED

multiple (yes | no) "no"

type (legal | actual) "legal"

null CDATA #IMPLIED

invalid CDATA #IMPLIED

>
<!ELEMENT MIN (#PCDATA)>
<!ATTLIST MIN

value CDATA #REQUIRED

inclusive (yes | no) "yes"

>
<!ELEMENT MAX (#PCDATA)>
<!ATTLIST MAX

value CDATA #REQUIRED

inclusive (yes | no) "yes"

>
<!ELEMENT OPTION (OPTION*)>
<!ATTLIST OPTION

name CDATA #IMPLIED

value CDATA #REQUIRED

>
<!ELEMENT LINK (#PCDATA)>
<!ATTLIST LINK

ID ID #IMPLIED

content-role (query | hints | doc) #IMPLIED

content-type CDATA #IMPLIED

title CDATA #IMPLIED

value CDATA #IMPLIED

href CDATA #IMPLIED

gref CDATA #IMPLIED

action CDATA #IMPLIED

>
<!ELEMENT STREAM (#PCDATA)>
<!ATTLIST STREAM

remote (yes | no) "no"

type (data | heap) "data"

encoding CDATA #IMPLIED

expires CDATA #IMPLIED

rights CDATA #IMPLIED

>
<!ELEMENT DATA (TABLEDATA | BINARY | FITS | CSV)>
<!ELEMENT TABLEDATA (ROW*)>

<!ATTLIST TABLEDATA

sep CDATA #IMPLIED

>
<!ELEMENT ROW (CELL+)>
<!ELEMENT CELL (#PCDATA)>
<!ATTLIST CELL

ref IDREF #IMPLIED

>
<!ELEMENT FITS (#PCDATA | STREAM)*>
<!ELEMENT CSV (#PCDATA | STREAM)*>
<!ATTLIST CSV

recsep CDATA #IMPLIED

colsep CDATA #IMPLIED

sep CDATA #IMPLIED

headlines CDATA #IMPLIED

sep CDATA #IMPLIED

>
<!ELEMENT BINARY (#PCDATA | STREAM)*>
<!ELEMENT COOSYS (#PCDATA)>
<!ATTLIST COOSYS

ID ID #IMPLIED

system (eq_FK4 | eq_FK5 | ICRS | ecl_FK4 | ecl_FK5 | galactic | supergalactic | xy | barycentric | geo_app) "eq_FK5"

equinox CDATA #IMPLIED

epoch CDATA #IMPLIED

x CDATA #IMPLIED

y CDATA #IMPLIED

>
10. References

[1] Accomazzi et. al, Describing Astronomical Catalogues and Query Results with XML
http://vizier.u-strasbg.fr/doc/astrores.htx
[2] FITS: Flexible Image Transport Specification, specifically the Binary Tables Extension
http://fits.gsfc.nasa.gov/

[3] Unified Content Descriptors
http://vizier.u-strasbg.fr/doc/UCD.htx
[4] GLU: Générateur de Liens Uniformes, CDS Strasbourg
http://simbad.u-strasbg.fr/glu/glu.htx

[5] World Wide Web Consortium, HTTP 1.1 Specification
http://www.w3.org/Protocols/rfc2068/rfc2068

�

datatype value�
Type�
Length (bytes)�
�
L�
Logical�
1�
�
X�
Bit�
*�
�
B�
Byte�
1�
�
I�
Short Integer�
2�
�
J�
Integer�
4�
�
K�
Long integer�
8�
�
A�
ASCII Character String�
1�
�
U�
Unicode String�
2�
�
E�
Floating point�
4�
�
D, F�
Double�
8�
�
C�
Float Complex�
8�
�
M�
Double Complex�
16�
�

1
1

