
Filters in Aladin

Thomas Boch

September 19th, 2006

Version 1.16

1 Introduction - What can I do with these filters

Filters are a new feature in Aladin allowing one to customize the display of
catalogue planes in Aladin.

Basically (without filters), a catalogue plane :

• uses only 2 parameters (position : RA and DEC) for displaying sources

• displays the same symbol and the same color for each catalogue object,
at the corresponding sky position

Thanks to the filters feature, it is possible to :

• combine several catalogue parameters with arithmetic operators (+
− ∗ / ˆ)

• set constraints on parameters (or combinations of parameters) to per-
form selections

• visualize any parameter by changing the symbols’ shape / color / size /
text. All these attributes can be customized as functions of catalogue
parameters (or combination of parameters)

Notice that the position of visible symbols will of course remain their sky
position.

Briefly, filters allow you not only to select sources on the basis of con-
straints, but also to customize the way a catalog plane is displayed, using
the catalogue contents.

Figure 1 is an example of what you can do with filters : we have here
splitted sources into 3 classes according to the value of their photographic
B magnitude.

1

Figure 1: Example of filter result

2

2 Syntax

A Filter consists of a list of Constraints and associated Actions.
Example of filter :

Constraint 1 { Action 1
Action 2 }

Constraint 2 { Action 3 }

A Constraint is a set of Conditions combined by logical operators
(AND, OR).
Example of constraint : (Condition 1 && Condition 2) || Condition 3

A Condition applies to Parameters (or combination of parameters).
Examples of conditions :

Parameter >= Value
Parameter 1 - Parameter 2 = Value

Parameters are specified via the corresponding UCDs or column names.
Examples of parameters :
via UCD : $[PHOT_JHN_V]
via column name : ${Vmag}

A Value can be a numeric value or a string value.

The global structure is quite similar to a switch structure in C which
would have a break statement at the end of each case. It means that if a
source verifies one constraint, the program won’t run into following cases for
this source.

Note : for a given constraint, the list of actions immediately follows the
constraint and must be embraced by brackets {}. Each action has to be
separated either by a carriage return or by a semicolon.

Figure 2 illustrates how a filter is applied to a set of sources. If a source
verifies the first constraint, then each corresponding action is made and the
next source is processed. If it doesn’t, we check whether the source verifies
the next constraint, and so on until there are no more blocks. If the source
verifies no constraint at all, it is not drawn.

2.1 Pointing out columns

In constraints and in the parameters of actions, UCDs and column names
have to be pointed out in a specific way.

The syntax is :

3

BEGIN

Are there
remaining blocks

Consider next block

Perform all
corresponding actions

verifies constraints of
the current block ?

Does the current source

Are there
remaining sources ?

END

Consider next source

Go to the begin of the filter

YES

YES

NO

NO

YES

NO

Figure 2: How a filter processes a set of sources

• Parameters always begin with $ (dollar sign)

• UCDs are enclosed in square brackets []. E.g: $[POS_EQ_PMDEC] or
$[PHOT_FLUX_RATIO] are valid UCD names.

• Column names are enclosed in braces {}. ${LumRat} or ${Imag} are
valid column names.

UCD names are case insensitive (in fact, they are automatically con-
verted to uppercase) whereas column names are case sensitive.

The star * and the question mark ? can be used as wildcards in UCDs
or column names. For instance, $[PHOT*] will point out the first column
name being tagged by a UCD beginning by PHOT.

4

2.2 Comments

You can put comments into your filters. Each line beginning with ”#” will
be ignored.
E.g :

This is a comment

2.3 Syntax of arithmetic expressions using UCDs/columns

You can use the following operators : +,-,*,/,ˆ to combine catalogue pa-
rameters. These parameters are specified via the corresponding UCDs or
column names. They can be used to define constraints but also in some
action parameters.
E.g:

${Bjmag}-$[PHOT_JHN_V]>1 {
Do some action
...
draw ellipse($[EXTENSION_RAD],

$[EXTENSION_RAD]*(1-$[PHYS_ECCENTRICITY]^2)^0.5,
$[POS_POS-ANG])

}

Moreover, you can use the following functions:

• abs : absolute value

• cos : cosinus

• deg2rad : convert degrees to radians

• exp : exponential

• ln : natural logarithm (base e)

• log : base 10 logarithm

• rad2deg : convert radians to degrees

• sin : sinus

• sqrt : square root

• tan : tangent

E.g:

log(abs(${Fi})/${Fx})>44 {draw}

5

2.4 Syntax of Conditions

A Condition is an arithmetic combination of Parameters followed by a
Comparison Operator followed by a Value.

The table below summarizes the allowed comparison operators for a nu-
meric value.

Operator Meaning Example
= Equality = 1
! = Inequality ! = 1
>= Greater or equals >= 12.0
> Strictly greater > 12.0
<= Less or equals <= 12.0
< Strictly less < 12.0

The table below summarizes the allowed comparison operators for a
string value.

Operator Meaning Example
= String equality (case sensitive) = ”Galaxy”
! = String inequality (case sensitive) ! = ”UV ”

When performing a comparison on a string, you can only use one pa-
rameter, ie combination of parameters is not allowed in this case.
It is allowed to use the star * and the question mark ? as wildcards when
performing string comparison.
E.g:

Draw in green sources whose name start with "IRAS"
$[ID_MAIN]="IRAS*" {draw green}
Draw in red sources with object type "GNe" or "BNe" or "DNe" ...
${otyp}="?Ne" {draw red}

Remark: in order to escape the wildcard star * character, prefix it with a
backslash.

Note : there is a special condition called undefined(ucd or column name)
which is true if the entered ucd/column name is not present for the current
object.
E.g:

Process first sources without the column Bjmag --> draw them black
undefined(${Bjmag}) {

draw black
}
Process sources with column Bjmag
...

6

2.5 Syntax of Constraints

The logical operators used to combine conditions are && – logical AND –
and || – logical OR.
E.g:

($[PHOT_PHG_B]<16 && $[PHOT_PHG_R]<15) || $[CLASS_OBJECT]="Star" {
draw

}

A constraint can also be empty. In such a case, the corresponding actions
will apply to all sources.
E.g:

No constraint, the action block is applied to all sources
{draw blue}

2.6 Syntax of Actions

Actions allow to change the appearance of symbols in a catalogue plane.
Available actions are :

• hide, which does nothing. This action is useful to hide a part of the
plane sources.

• draw When used without parameters, this action just draws the
source as usual using the default shape and color of the plane. It also
has 2 optional parameters which allow to customize both shape and
color (explained afterwards). E.g: draw green square

• You can also draw a string, being either a constant string or the content
of a column. The color can also be specified. E.g: draw $[CLASS_OBJECT] blue

2.6.1 How to define a color

You can specify the color you want to assign to either a shape or a string.
The color function is optional and can take place be either after the draw
keyword, or after the optional shape function. E.g:

{
Color function after the "draw" keyword
draw blue square
Color function after the shape function
draw circle(-$[PHOT_PHG_B]) #00ff00
}

There are different ways to define a color :

7

• #rrggbb, where rr, gg, bb are respectively the values of red, green and
blue components of the color in hexadecimal. E.g: {draw #44dd99}

• You can enter predefined color names. Allowed values are black, blue,
cyan, darkGray, gray, green, lightGray, magenta, orange, pink, red
white, yellow. E.g: {draw red}

• rgb function allows to define a color whose components depend on some
column values. For each component, the max and the min values are
computed, so that each value is normalized in order to be in the range
0-255. E.g: {draw rgb($[PHOT_PHG_B],0,-$[PHOT_PHG_B])}

• rainbow function has a single parameter in the range 0-1. This filter
aims at going through the whole visible spectrum (blue-violet to red,
0 to 1). If the parameter is variable (for instance a column name), the
values are normalized between 0 and 1. This can be useful if you want
to visualize a color index. E.g: {draw rainbow($[PHOT_JHN_U-B])}

2.6.2 How do I customize the shape

You can customize the shape of sources. It is an optional parameter, which
takes place either just after the draw keyword, or after the color function.

There are shapes without parameter : they are the same as those in the
properties of a catalog plane :

* square

* rhomb

* cross

* plus

* dot

* microdot

E.g:

Filter drawing different shapes according to the class of the object

Draw a plus for Star objects
$[CLASS_OBJECT]="Star" {draw plus}
Draw a rhomb for Radio objects
$[CLASS_OBJECT]="Radio" {draw rhomb}
Draw a dot for other objects
{draw dot}

Furthermore, there are some shape functions requiring parameters :

8

* the circle function is used to draw a circle whose radius depends on a
parameter which can be any column or combination of columns. The
typical use of this function is drawing circles according to magnitude
values. There are 2 optional parameters to define the minimum and
the maximum radius size in pixels (otherwise, these values are set by
default). Parameter values are normalized to fit into the range.
The size of each circle is set as a number of pixels relative to the
underlying reference image, which means that circles scale up when
the user zooms in.
E.g:

Draw circles according to Johnson B magnitude
{draw circle(-$[PHOT_JHN_B])}

Draw circles according to Johnson B magnitude
Set min value to 3, max value to 40
{draw circle(-$[PHOT_JHN_B],3,40)}

* the fillcircle function is similar to the circle one. It draws a filled circle
instead of an empty one.

* the fixedcircle function is similar to the fillcircle one, except that the
size of each circle (as a number of pixels) is relative to the user’s screen,
meaning that fixedcircles do not scale up.

* the ellipse function is typically used to draw dimension ellipses or
error ellipses. It takes 3 parameters : the semi-major axis, the semi-
minor axis. If the unit of one parameter is missing or not understood,
semi-major and semi-minor axis are assumed to be in arcsec, and the
position angle is assumed to be in degrees. If the position angle can’t
be retrieved or is empty, its value is assumed to be zero.
E.g:

This filter draws dimension ellipses for Simbad sources
and GSC2 sources
{
Ellipses for Simbad
draw ellipse(0.5*${DimMa}, 0.5*${DimMi}, ${DimPA})
Ellipses for GSC2
draw ellipse($[EXTENSION_RAD],

$[EXTENSION_RAD]*(1-$[PHYS_ECCENTRICITY]^2)^0.5,
$[POS_POS-ANG])

}

9

* the pm function was designed to allow the visualization of proper mo-
tion of stars. It takes 2 parameters which are the proper motion in
right ascension and the proper motion in declination, and draws an ar-
ray corresponding to this proper motion. If units are missing or could
not be understood, both parameters are assumed to be in mas/yr. By
default, a proper motion of 1mas/yr is displayed by an array of 1arc-
sec.
E.g:

Draws proper motions
1mas/yr will correspond to an array of 5arcsec
{draw pm(5*$[POS_EQ_PMRA],5*$[POS_EQ_PMDEC])}

* use the rectangle function to draw a rectangle by specifying its width,
height, and position angle. If the unit of one parameter is missing or
not understood, width and height are assumed to be in arcsec, and
the position angle is assumed to be in degrees. If the position angle
can’t be retrieved or is empty, its value is set to zero.
E.g:

{
Draw a rectangle with dimensions and orientation
according to given field values in the catalogue
draw rectangle(${width}, ${height}, ${posAngle})
}

* the line function draws a line between 2 points on the sky. This might
be quite useful when analyzing some cross-match results. Parameters
are right ascension and declination of the 2 positions. All 4 parameters
are assumed to be expressed in decimal degrees.
E.g:

{
Draw a line between 2 positions
according to given field values in the catalogue
draw line(${ra1}, ${dec1}, ${ra2}, ${dec1})
}

3 Usage in Aladin

3.1 Creating a filter

Figure 3 describes how to create a filter. First, click on te Filter button in
the tool bar. This will create in the stack a new plane dedicated to a filter.

10

Figure 3: Creating a filter in 3 steps

The Properties window will pop up, in order to let you enter your definition.
Type in your filter definition, and press the Apply button.

In the properties window of a filter, predefined filters are intended to help
you understand the syntax of a filter.
If you right-click in the definition text area, a pop-up help menu will appear
and allows easy access to columns/UCDS names and list of actions.

3.2 Modify a filter

To modify a filter, open the Properties window of the filter. Then, modify
the definition and press Apply to confirm the changes.
If the filter is active, the result will be updated. If it is not, the new definition
will be taken into account as soon as the filter becomes activated.

11

3.3 Syntax errors

When creating or modifying a filter, you may enter a definition which is
syntactically incorrect. If it happened, the filter is deactivated, a message
pops up to let you know what the error is. At the same time, the status
pastille next to the filter name in the stack becomes red.

If you try to activate a filter whose definition is incorrect, you will see a
message asking you to correct the error.

3.4 Activate/Deactivate a filter

Filters are like other planes : you can easily activate or deactivate them,
just by clicking on the logo.

3.5 Scope of a filter

A filter applies to all active catalogue planes located below it. If the filter
is in a folder, it applies to all active catalogues located below it and in the
same folder, including catalogues being in subfolders.

Figure 4 explains this principle. We have created 2 filters, TEST and
CIRCLE. TEST just prints the string TEST, CIRCLE draws a circle ac-
cording to the magnitude of the object.
As you can see, the filter TEST applies to planes GSC1.2 and USNO2 which
are below it, but does not apply to plane Simbad. CIRCLE applies to
GSC1,2, which is in the same folder, but does not apply to USNO2 even
though it is located below CIRCLE.

Whenever a filter or a catalogue plane has moved, whenever a new catalogue
plane is created, filters results are automatically reprocessed and updated.

3.6 Applying multiple filters

You can apply several filters simultaneously. Each filter has its own scope,
and each filter performs its actions apart from each other.

3.7 Creating a filter in script mode

You can create filters in script mode, via in-line commands.
The syntax is almost identical to the one you use in graphical mode. The
only difference is that you have to begin with filter filtername { and
to finish with a closing bracket }. The filter definition can be on multi-
ple lines : once you entered filter filtername {, the prompt becomes
Aladin - Filter def. and waits until you enter the final }.
E.g:

12

Figure 4: Scope of filters

Aladin> filter circle {
Aladin - Filter def.> {draw circle(-$[PHOT*])}
Aladin - Filter def.> }

Filters can also be activated/deactivated with the command:

filter [filtername] [on|off]

3.8 Miscellaneous

Figure 5 shows 3 highlighted buttons contained in the Properties window
of a filter.

• Export creates a new catalogue plane having all filtered sources. This
can be useful to save the result of a filtering process.

This feature can be used regardless of the activated/deactivated status of
the filter.

13

Figure 5: Select and Export features

Appendices

A Backus Naur Form of filter syntax

This is an attempt to describe the syntax of a filter in the extended Backus-
Naur-Form. It describes in a shorter way what has been explained in sec-
tion 2.

<filter> ::= <constraints block>+

<constraints block> ::= <constraint> "{" (<action><action separator>)* "}"

<action separator> ::= Carriage Return | ";"

<constraint> ::= (<simple condition> [<logical operator> <constraint>])
| "undefined(" (<UCD>|<column>) ")"

14

<condition> ::= <expression> <comparison operator> <value>

<expression> ::= (["+"|"-"] (<UCD>|<column>|<numeric>)
[(("+"|"-"|"*"|"/") <expression> | "^" <numeric>)])
| <function>"("<expression>")"

<function> ::= abs | cos | deg2rad | exp | ln | log | rad2deg | sin | tan

<value> ::= <string> | (<numeric> [<unit>])

<logical operator> ::= "&&" | "||"

<comparison operator> ::= "==" | "!=" | ">" | ">=" | "<" | "<="

<action> ::=
"draw" [<color function>] [(<shape function>|<UCD>|<column>|<string>)]
| "hide"

<UCD> ::= "$[" UCD name "]"

<column> ::= "${" column name "}"

<shape function> ::= (("circle"|"fillcircle"|"fixedcircle")"("
<expression> [","<numeric>","<numeric>]")")

| "ellipse(" <expression> "," <expression> "," <expression> ")"
| "pm(" <expression> "," <expression> ")"
| "rectangle(" <expression> "," <expression> "," <expression> ")"
| "line(" <expression> "," <expression> ","

<expression> "," <expression> ")"
| "square" | "rhomb" | "cross" | "plus" | "dot" | "microdot"

<color function> ::= "rgb(" <expression>, <expression>, <expression> ")"
| "rainbow(" <expression> ")"
| "black" | "blue" | "cyan" | "darkGray" | "gray" | "green"
| "lightGray" | "magenta" | "orange" | "pink" | "red" | "white"
| "yellow"

15

	Introduction - What can I do with these filters
	Syntax
	Pointing out columns
	Comments
	Syntax of arithmetic expressions using UCDs/columns
	Syntax of Conditions
	Syntax of Constraints
	Syntax of Actions
	How to define a color
	How do I customize the shape

	Usage in Aladin
	Creating a filter
	Modify a filter
	Syntax errors
	Activate/Deactivate a filter
	Scope of a filter
	Applying multiple filters
	Creating a filter in script mode
	Miscellaneous

	Backus Naur Form of filter syntax

