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Introduction

Objectives
Astronomy: 2D image (sky map)
Remote sensing: 2D reflectance map
Small bodies: 3D surface geometry
Earth/planetary sciences: reflectance and topography

Proposed approach
Bayesian inference from multiple observations
Accurate forward modeling
Preliminary results: validation on 1D signal fusion

Collaborations
Deformation fields in Earth Sciences
Dempster-Shafer fusion theory



Why multisource data fusion?

๏ Multisource data fusion

‣ Optimally combine all observations into a single model
Co-add or build a mosaic, depending on the overlap

‣ Preserve all the information from the original data set

•Increase resolution if needed

•Compute the uncertainties

•Reconstruct the 3D geometry if required

‣ Enhance the image quality (optional)
Denoise or deblur depending on the degradation

Problem: lots of data, same object!

Usually, images are recorded with various:
 ◆ pose parameters (position, orientation)
 ◆ sensors (resolution, noise, bad pixels)
 ◆ observing conditions (transparency, seeing)
 ◆ instruments (PSF, distortions)
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Objectives

Produce a corrected, super-
resolved image in astronomy

Reconstruct a reflectance function 
in remote sensing

Recover the geometry of small 
bodies and planetary surfaces

Reconstruct both reflectance and 
topography in Earth/Space Sciences



Astronomy:
2D image reconstruction

๏ Input:

‣ Multiple images (single band, multispectral or IFS)
Virtual Observatory

‣ Optical, UV, IR / calibrated or not / missing or corrupted data

๏ Output:

‣ Single model, 2D (image-like), well-sampled

‣ Uncertainties (simplified inverse covariance)

‣ If applicable, spatial and spectral super-resolution

DeepSkyFusion
Multisource data fusion and 2D super-resolution

Astronomy & Astrophysics



Remote sensing:
2D reflectance reconstruction (3D space)

๏ Input:

‣ Multiple images (single band, multispectral or hyperspectral)

‣ Optical, IR / calibrated or not / missing or corrupted data

๏ Output:

‣ Single model, 2D (image-like) reflectance map, well-sampled

‣ Uncertainties (simplified inverse covariance)

‣ If applicable, spatial and spectral super-resolution

ReflectanceFusion
Multisource data fusion for flat terrain BRDF recovery

Remote Sensing, Planetary Imaging



Small bodies:
3D surface recovery (geometry only)

3DShapeInference
3D shape recovery via Bayesian inference

Planetary Imaging (small bodies and planets) SurfaceModelRender
Accurate rendering and modeling
of natural 3D surfaces

๏ Input:

‣ Multiple images (single band)

‣ Optical, IR / calibrated or not / missing or corrupted data

๏ Output:

‣ Single model, 3D mesh (planar or spherical topology)

‣ Uncertainties (simplified inverse covariance)



Earth & Planetary Sciences:
reflectance and topography recovery

๏ Input:

‣ Multiple images (single band, multispectral or hyperspectral)

‣ Optical, IR / calibrated or not / missing or corrupted data

๏ Output:

‣ Single model, 3D mesh + well-sampled reflectance map

‣ Uncertainties (simplified inverse covariance)

‣ If applicable, spatial and spectral super-resolution (reflectance)

3DSpaceFusion
Multisource data fusion, 3D surface recovery and super-resolution

Planetary Imaging

3DEarthFusion
Multisource data fusion, 3D surface recovery, BRDF inference and super-resolution

Remote Sensing



The proposed approach

Use Bayesian inference to recover a 
single object from all observations

Provide uncertainty estimates,
allow for recursive data processing

In 2D: recover a well-sampled 
image, possibly super-resolved

Check the validity of this approach 
in 1D (first results)
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Bayesian Vision

๏ Computer vision:
model reconstruction from multiple observations, 
inverse problem of rendering

๏ Bayesian inference 
applied to this inverse problem:
everything is described by random variables

๏ Data fusion into a single model becomes a 
parameter estimation problem

๏ It can be solved by existing efficient 
optimization techniques



Bayesian inference
from multiple observations

๏ Probabilistic approach

‣ Modeling:

•Object modeling (image, 3D geometry, reflectance map...)

•Image formation = forward model (rendering)

‣ Bayesian inference:

•Estimate the optimal object given all observations: 
mode or mean of the posterior distribution

•Integrate w.r.t. all nuisance variables (marginalization)

•Evaluate the uncertainties: 
covariance matrix (Gaussian approx. of the posterior distribution)

•Model selection and assessment
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Accurate forward modeling

๏ 2D object, 2D space

‣ Resampling, account for deformations & PSF
(possibly irregular sampling grid: IFS)

๏ 2D object, 3D space

‣ Resampling, account for perspective
transformation, deformations & PSF

๏ 3D object, 3D space

‣ Rendering in the object space, account for 
occlusions, shadows, perspective, deformations & PSF

PSF h

L(x)



First goal: 2D image reconstruction

๏ Related problems

‣ Image registration: external camera parameter estimation

‣ Image modeling for regularization purposes

‣ Prior model parameter estimation

‣ Model selection (e.g. scene model resolution)

Goal: combine N images
(different blur, resolution, FOV, noise...)
into a single object: pixel values + uncertainties

Preserve the information from the original data set:
photometry and astrometry



Directed graphical models:

Node = set of random variables
No incoming arrow: prior density

Arrow = dependence
Set of incoming arrows: conditional density

Joint distribution: P(X,Y,ω,θ,ε)=P(ω)P(θ)P(ε)P(X|ω)P(Y|X,θ,ε)
Posterior marginal: P(X|Y)∝∫ P(X,Y,ω,θ,ε) dωdθdε

Simplified graphical model
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Full graphical model
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Image model

๏ Model of the unknown object (2D image)

‣ Choose an appropriate parametrization and topology

•Rectangular or hexagonal lattice

•Sampling grid size ε chosen to avoid undersampling

‣ Understand the sampling theorem!

•Don’t try to go beyond the Shannon sampling limit (frequency cut-off)

•Choose an correct target: near-optimal sampling, band-limited
The BSpline-3 kernel provides a good approximation

‣ Constrain and stabilize this inverse problem
(can be ill-posed in some cases, e.g. deblurring)

•Use smoothness priors to avoid noise amplification (oversampled 
areas will undergo a deconvolution even if we just want data fusion...)

•Use efficiently designed prior models (e.g. multiscale, wavelets) to 
help preserve useful information while filtering the noise, and remain 
computationally effective

Output pixel size < input PSF FWHM / 2



Noise modeling

๏ Gauss+Poisson+Quantization noise

‣ Gaussian noise: thermal

‣ Poisson noise: counting process

‣ Uniform noise: quantization

‣ Approximation: Gaussian, spatially variable variance σI+ τ
(depends on each sensor, possibly spatially variable σ and τ) 

๏ Pixel & sensor indep. assumption: P(Y | L)=∏pn P(Yp
n | L)

Probabilistic image formation scheme

P(Yp | Ip) =  Gauss(0,a2)✱Poisson(bIp)✱U(0,1)

P(Yp | Ip) ≈  Gauss(Ip,vp) with vp= τIp+σ2



First results: 2X super-resolution (1D signals)

2 observations
blur, noise

1/3 sample shift

Reconstructed signal

95% confidence interval

data points ideal signal

De-aliasing
+ regularized
deconvolution

real PSF

target PSF

0 1-1

(model space)



Computing and propagating uncertainties

๏ Inverse covariance matrix computation

‣ Second derivatives of the energy U(X) at the optimum

‣ Sparse matrix

(interaction range depends on the size of h)

๏ Recursive processing and uncertainty propagation

‣ Use the simplified posterior (mean, approx. inv. covariance)
as a prior density for subsequent data processing

‣ Recursive (vs. batch) data fusion: allow for model updates
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Inversion with unknown parameters

๏ Full Bayes P(X | Y) - intractable in general

๏ Empirical Bayes

‣ First compute P(ω,θ | Y) - e.g. marginal MAP

‣ Plug in the estimate and maximize P(X | Y,ω,θ)

‣ Good approximation of the full Bayes if P(ω,θ | Y) is peaked,
otherwise the data is used twice (learning/inference)... 

๏ Parameter inference with E-M 

‣ Goal: P(ω,θ | Y); consider X as the missing data

‣ Standard E-M: maximize P(ω,θ | Y), variational E-M: inference

‣ Simpler, but more sensitive to local optima than exact marginal.

๏ Joint MAP

‣ Compute the joint MAP related to P(X,ω,θ | Y)

‣ Usually done by alternate optimizations X,ω,θ (sub-optimal)

‣ Simple but unstable, biased, not recommended



Remarks

๏ Spline interpolation in the presence of noise [Unser & Blu 05]

‣ Single observation (no fusion):
sampling resolution = model resolution

‣ Assumed blur kernel = spline kernel

‣ Gaussian noise

๏ Spline interpolation and irregular sampling? [Arigovindan 05]

‣ Similar assumptions (single, spline, Gauss)

‣ Irregular sampling in the sensor space

Special cases of the proposed framework:

The proposed approach is a generalization to multiple 
observations, arbitrary noise, arbitrary geometry

Uncertainties are provided, recursive inference is made possible



Collaborations

Validation: specialists from 
astronomy and remote sensing

Inferring deformation fields from 
satellite images (Earth Sciences)

Links between Bayesian and 
Dempster-Shafer theory



Validation in astronomy & remote sensing

๏ Astronomy
Check the validity of the models (e.g. priors on images, sensor and 
instrument physics and geometry), the good match between our goals 
and the astronomer’s needs

‣ Observatoire de Strasbourg
B. Vollmer

‣ Observatoire de la Côte d’Azur (OCA)
A. Bijaoui, E. Slezak

๏ Remote sensing
Check the validity of the models (e.g. hyperspectral image and 
reflectance function models, sensors & PSFs), the good match between 
our goals and the specialist’s needs

‣ LSIIT / TRIO (remote sensing team @ LSIIT)
F. Nerry



Deformation fields in Earth Sciences

๏ Infer the parameters of the geometric transform
2 images: one before, one after earthquake or deformation

‣ Deformation field = spatially variable translation

‣ Challenge: subpixel accuracy (0.1 pixel to detect a 10 cm shift)

‣ Use a smoothness prior allowing for discontinuities on segments (faults)

Before EQ (simulation) After EQ (simulation) Deformation field (y)

D. Fitzenz, J. Van der Woerd - IPG Strasbourg



Dempster-Shafer fusion theory: 
sensor reliability

๏ Other approaches to data fusion? 

‣ Dempster-Shafer theory of evidence:                                                   [Shafer 76]

defined for discrete variables (e.g. hard classification),
assign/combine degrees of belief (epistemic plausibilities)

More general than Bayes, 
Better handling of what is “non-informative”

‣ How to take into account the global reliability of each sensor?

‣ Is the Bayesian approach the best answer to missing data
or incomplete model knowledge? 

‣ Can we switch between the different approaches, and how?
...

Pieczinski - INT Evry



Conclusions

Accomplishments
Bayesian approach to data fusion in 2D (theory)
Validation in 1D (bandlimited signal reconstruction)

Super-resolution from multiple undersampled observations
Uncertainty computation - covariance & inverse covariance matrices

To do...
2D implementation (direct extension of the 1D work)
2D/3D: more complex imaging model, but same approach
Full 3D surface recovery:

Extension of the 2D curve reconstruction method [MaxEnt04]
Forward model (rendering): radial basis functions?
Reflectance map inference

Validation on real data (Ikonos / VO)


